1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Wilson's Theorem Question

  1. Nov 3, 2008 #1
    [tex]2\cdot4\cdot...\cdot(p-1)\equiv(2-p)(4-p)\cdot...\cdot(p-1-p)\equiv(-1)^{\frac{(p-1)}{2}}\cdot1\cdot3\cdot...\cdot(p-2)[/tex] mod [tex]p[/tex]
    [tex](p-1)!\equiv-1[/tex] mod p [Wilson's Theorem]
    to prove
    [tex]1^2\cdot3^2\cdot5^2\cdot...\cdot(p-2)^2\equiv(-1)^{\frac{(p-1)}{2}}[/tex] mod [tex]p[/tex]

    Relevant equations

    Gauss lemma
    wilson's theorem [[tex](p-1)!\equiv-1[/tex] mod[tex]p[/tex]]

    The attempt at a solution
    need assistance

  2. jcsd
  3. Nov 3, 2008 #2


    User Avatar
    Homework Helper
    Gold Member


    [tex]2 \cdot 4 \cdot \ldots \cdot (p-1)=\frac{(p-1)!}{1 \cdot 3 \cdot \ldots \cdot (p-2)}=(p-1)! \cdot \left( \frac{1}{1 \cdot 3 \cdot \ldots \cdot (p-2)} \right)[/tex]
  4. Nov 3, 2008 #3
    Thanks, this problem is solved.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Wilson's Theorem Question
  1. Wilson's Theorem (Replies: 4)

  2. Wilson's theorem proof (Replies: 3)