- #1

kappcity06

- 90

- 0

**work and kinetic energy?**

i was wondering if anyone could help with this proplem:

A skier pulled by a tow rope up a frictionless ski slope that makes an angle of 12° with the horizontal. The rope moves parallel to the slope with a constant speed of 1.0 m/s. The force of the rope does 930 J of work on the skier as the skier moves a distance of 7.2 m up the incline.

If the rope moved with a constant speed of 2.0 m/s, how much work would the force of the rope do on the skier as the skier moved a distance of 7.2 m up the incline?

At what rate is the force of the rope doing work on the skier when the rope moves with a speed of 1.0 m/s

At what rate is the force of the rope doing work on the skier when the rope moves with a speed of 2.0 m/s?

all that i have is w=f*d*cos(theta) please help