After stating the Weierstrass M-test for series of complex functions and the "[itex]f_n[/itex] continuous and uniformly convergeant to f on E ==> f continuous on E" thm, my teacher gives as a corollary that every power series [itex]\sum a_nz^n[/itex] is continuous on its disc of convergence D(0,R). And he doesn't give a proof, as if it's trivial.(adsbygoogle = window.adsbygoogle || []).push({});

But I think the corollary is wrong. Am I right in thinking so?

The convergence is absolute over all of D(0,R), but we only know for sure that the convergence is only uniform over [itex]\emptyset = \partial D(0,R) \cap U \subsetneq D(0,R)[/itex]. Hence, so is the continuity.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Wrong corollary?

**Physics Forums | Science Articles, Homework Help, Discussion**