1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

X^p + y^p = z^p

  1. Apr 24, 2004 #1
    X^2 :

    3^2 = 2*(1+2)+3

    4^2 = 2*(1+2+3)+4

    5^2 = 2*(1+2+3+4)+5

    6^2 = 2*(1+2+3+4+5)+6

    X^3 :

    3^3 = 3*(1*2 + 2*3)+3

    4^3 = 3*(1*2+2*3+3*4)+4

    5^3 = 3*(1*2+2*3+3*4+4*5)+5

    6^3 = 3*(1*2+2*3+3*4+4*5+5*6)+6
     
  2. jcsd
  3. Apr 25, 2004 #2

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    you keep writing these as if there is something deep going on. A little elementary algebra should show you it's not.
     
  4. Apr 25, 2004 #3

    honestrosewater

    User Avatar
    Gold Member

    Russell,

    for x and n in N, you can write the sequence x^n using partial sums and n!s. (n factorials)

    For n=1, think sigma[y+1], y is nonegative integer
    For n=2, think sigma[2y+1]
    For n=3, think sigma[6([y^2+y]/2)+1]
    ...

    You can see the connection by expanding (x+1)^n.
    Now look at n! and the partial sums of (1, 1, 1...), i.e. (1, 2, 3...) (1, 3, 6...) (1, 4, 10...)...

    I didn't see the connection at first either :)

    Happy thougths
    Rachel
     
  5. Apr 26, 2004 #4
    :eek: :eek: :eek:


    It's called brainstorming. Everything does not necessarily start out with ...deep thoughts.


    3^2 = (1+1)*(1+2) + 3

    4^2 = (1+1)*(1+2+3) + 4

    5^2 = (1+1)*(1+2+3+4) + 5

    [...]

    3^2 = (1+1)*(1+2) +3

    3^3 = (1+2+3)*(1+3) + 3

    3^5 = (1+2+3)*(1+2+3+4)*(1+3) + 3

    3^7 = (1+2+3+4+5+6+7+8+9+10+11+12+13)*(1+2+3)*(1+3) +3
     
  6. Apr 26, 2004 #5
    5^2 = 4*5/2 + 5*6/2

    13^2 = 12*13/2 + 13*14/2

    17^2 = 16*17/2 + 17*18/2

    25^2 = 24*25/2 + 25*26/2

    5^2 = 10+15

    13^2 = 78+91

    17^2 = 136+153

    25^2 = 300+325

    1+2+3+...+N = N*[N+1]/2

    X^2 = X*[X-1]/2 + X*[X+1]/2

    X^3 = X*[X^2-1]/2 + X*[X^2+1]/2

    X^4 = X*[X^3-1]/2 + X*[X^3+1]/2

    X^n = X*[X^(n-1) -1]/2 + X*[X^(n-1) + 1]/2
     
  7. Apr 26, 2004 #6

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    But why do you feel the need to just write them out repeatedly without explanation?
     
  8. May 12, 2004 #7
    5*2-1 = 3^2

    5*3+1 = 4^2

    [5*2-1] + [5*3+1] = 5*2 + 5*3 = 5*[2+3] = 5^2


    [13*2-1] + [13*11+1] = 5^2 + 12^2 = 13^2

    [17*4 - 4] + [17*13 + 4] = 17^2


    Z*U + K = X^2

    Z*V - K = Y^2



    [Z*U + K] + [Z*V - K] = Z*U + Z*V = Z*[U + V] = Z*Z = Z^2

    = X^2 + Y^2


    Z = U + V
     
  9. May 16, 2004 #8
    The General Equation?

    3*(3+4) + 4*|4-3| = 5^2

    3*(3+4) + 4*1 = 5^2

    3*(3+4) + 4*(1 + 5^2) = 5^3

    3*(3+4) + 4*(1 + 5^2 + 5^3) = 5^4

    3*(3+4) + 4*(1 + 5^2 + 5^3 + 5^4) = 5^5

    etc...


    5*(5+12) + 12*|12 - 5| = 13^2

    5*(5+12) + 12*(7 + 13^2) = 13^3

    5*(5+12) + 12*(7 + 13^2 + 13^3) = 13^4

    etc...

    The equation? :

    p is a prime number > 2.

    z^p = x*(x+y) + y*( |y-x| +...+ z^(p-1) )
     
  10. Jun 5, 2004 #9
    More random thoughts:


    a^n + b^n = c^n

    [a+b] > c

    [a+b] - d = c


    [a+b] = [c+d]


    [a+b]^2 = [c+d]^2


    a^2 + 2ab + b^2 = c^2 + 2cd + d^2

    iff

    a^2 + b^2 = c^2

    then

    2cd + d^2 = 2ab

    [...]

    [a+b]^3 = [c+d]^3

    a^3 + 3ba^2 + 3ab^2 + b^3 = c^3 + 3dc^2 + 3cd^2 + d^3


    iff

    a^3 + b^3 = c^3


    then

    3ba^2 + 3ab^2 = 3dc^2 + 3cd^2 + d^3

    ba^2 + ab^2 = dc^2 + cd^2 + [d^3]/3
     
  11. Jun 27, 2004 #10
    Fermat Algebra

    a^3 + b^3 = (a+c)^3


    a^3 + b^3 = (b+d)^3


    (a+c) = (b+d)


    a^3 = (b+d)^3 - b^3


    b^3 = (a+c)^3 - a^3


    a^3 + b^3 = (b+d)^3 - b^3 + (a+c)^3 - a^3


    a^3 + b^3 = 3ca^2 + 3ac^2 + 3db^2 + 3bd^2


    a^3 + b^3 = 3ac(a+c) + 3bd(b+d)


    a+c = b+d


    a^3 + b^3 = 3ac(a+c) + 3bd(a+c)


    a^3 + b^3 = 3*(a+c)*(ac+bd)


    (a+c)*(ac+bd) must be a certain multiple of 3 in order for a^3 + b^3 to be a "cube"


    3*9 = 3^3


    3*72 = 6^3


    3*243 = 9^3


    3*576 = 12^3


    Interesting...
     
    Last edited: Jun 27, 2004
  12. Jun 27, 2004 #11

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Sheesh, the arithmetic's even wrong. (what happened to d^3 and c^3?)
     
  13. Jun 27, 2004 #12

    Thanks for your excellent help Hurkyl

    a^3 + b^3 = (a+c)^3

    a^3 + b^3 = (b+d)^3

    a^3 + b^3 = a^3 + 3ac^2 + 3ca^2 + c^3

    a^3 + b^3 = b^3 + 3bd^2 + 3db^2 + d^3


    b^3 = 3ac^2 + 3ca^2 + c^3

    a^3 = 3db^2 + 3bd^2 + d^3

    a^3 - d^3 = 3db^2 + 3bd^2

    b^3 - c^3 = 3ca^2 + 3ac^2


    same principle:


    3*9 = 3^3


    3*72 = 6^3


    3*243 = 9^3


    3*576 = 12^3


    Interesting...
     
  14. Jun 27, 2004 #13
    The abc conjecture:

    http://www.math.unicaen.fr/~nitaj/abc.html#Consequences

    Asymptotic Fermat using L'Hopital's rule:

    B > A

    A^x + B^x

    [A^x + B^x]^[1/x]

    L'Hopital's Rule:

    Limit f(x)/g(x) = Limit f'(x)/g'(x)

    Take the natural log

    Ln[A^x + B^x]^[1/x] = Ln[A^x + B^x]/x


    = f(x)/g(x)


    L'Hopital's Rule...

    Limit Ln[A^x + B^x]/x =

    [(A^x)*Ln[A] + (B^x)*Ln]/[A^x + B^x] / 1

    = LnA/[1 + [B/A]^x] + LnB/[1+[A/B]^x]

    Take the limit

    = 0 + Ln

    e^LnB = B

    Limit

    for B > A

    [A^x + B^x]^[1/x] = B
     
  15. Aug 20, 2004 #14
    Interesting...

    x+y = A

    x-y = B

    [A+B]/2 = x

    [A-B]/2 = y


    x^2 + y^2 = [A^2 + B^2]/2

    x^3 + y^3 = [A^3 + 3AB^2]/4

    x^5 + y^5 = [A^5 + 10A^3 B^2 +5AB^4]/16



    So [A^3 + 3AB^2]/4 cannot be a cube...

    It is a cube if A = B but x and y are integers greater than zero so A cannot equal B...
     
  16. Aug 21, 2004 #15
    [itex]x+y = A[/itex]

    [itex]x-y = B[/itex]

    [itex][A+B]/2 = x[/itex]

    [itex][A-B]/2 = y[/itex]


    [itex]x^2+y^2 = [A^2 + B^2]/2[/itex]

    [itex]x^3+y^3 = [A^3 + 3AB^2]/4[/itex]

    [itex]x^4+y^4 = [A^4 + 6A^2 B^2 + B^4]/8[/itex]

    [itex]x^5+y^5 = [A^5 + 10A^3 B^2 + 5AB^4]/16[/itex]

    [itex]x^6+y^6 = [A^6 + 15A^4 B^2 + 15A^2 B^4 + B^6]/32[/itex]

    [itex]x^7+y^7 = [A^7 + 21A^5 B^2 + 35A^3 B^4 + 7AB^6]/64[/itex]

    etc...
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: X^p + y^p = z^p
Loading...