Yang-Mills theory question

  • #1
157
72
While revising Yang-Mills theory, I have stumbled upon a certain problem, which I solved in a somewhat trivial way so I would like to check whether my reasoning is correct.

Let's say we have a multicomponent matter field ##\{\phi^m(x)\}## which transforms according to some Lie group ##G## of internal symmetry:
$$\phi'(x) = \phi(x) + \delta_0\phi(x)$$
$$\delta_0\phi(x) = \theta^aT_a\phi(x) \equiv \theta\phi(x)$$
where ##\theta^a## are parameters, ##T_a## are generators, and ##a## is multiplet index.
We localize this internal symmetries by ##\theta^a \rightarrow \theta^a(x)##. In order to maintain invariance of the Lagrangian, we introduce the covariant derivative:
$$\nabla_\mu \phi(x) = (\partial_\mu + A_\mu)\phi(x) \qquad A_\mu \equiv A^a_\mu T_a$$
where ##A_\mu## is the introduced gauge field.
Now when we localize the symmetry and introduce the covariant derivative in such a way that keeps Lagrangian invariant, we have that the covariant derivative of the field transforms according to the rule(by definition):
$$\delta_0\nabla_\mu\phi(x) = \theta\nabla_\mu\phi(x)$$
And we have that equations of motion can be written in covariant form:
$$\frac{\partial \mathcal{L}}{\partial \phi} - \nabla_\mu\frac{\partial\mathcal{L}}{\partial\nabla_\mu\phi} =0$$

We define the following quantity:
$$K^\mu = \frac{\partial\mathcal{L}}{\partial\nabla_\mu\phi}$$
and we're looking for the transformation properties of this quantity. I have solved it by saying that the quantity ##K^\mu\nabla_\mu\phi## must be gauge invariant, that is:
$$\delta_0(K^\mu\nabla_\mu\phi) = 0$$
from which it is easy to find that ##\delta_0K^\mu = -K^\mu\theta##. This is the correct solution, however I'm not sure whether my argument is correct. I have a gut feeling that it must be correct, but in that case I don't see why it would rigorously be true, although it seems trivially true for quadratic Lagrangian.

So it would be good if someone would look at this and point it out if I did this correctly. Thanks.

Antarres
 
  • Like
Likes vanhees71

Answers and Replies

  • #2
vanhees71
Science Advisor
Insights Author
Gold Member
2019 Award
15,684
7,018
It looks correct to me.
 
  • Like
Likes Antarres

Related Threads on Yang-Mills theory question

  • Last Post
Replies
0
Views
2K
  • Last Post
Replies
3
Views
2K
Replies
3
Views
1K
  • Last Post
Replies
12
Views
4K
  • Last Post
Replies
6
Views
1K
  • Last Post
3
Replies
62
Views
13K
Replies
5
Views
3K
Replies
6
Views
3K
  • Last Post
Replies
4
Views
3K
Replies
6
Views
4K
Top