(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

show with mathematical induction that prod(k=1->n) (1+1/n)^n=(n+1)^n/n!

n element Natural numbers

3. The attempt at a solution

works for n=1,

[tex]\prod_{k=1}^{n+1}\left(1+\frac{1}{k+1}\right)^{k+1}[/tex] should become [tex]\frac{(n+2)^{n+1}}{(n+1)!}[/tex]

[tex]= (1+(n+1)^{-1})*((1+(n+1)^{-1})^n)*\frac{(n+1)^n}{n!}[/tex]

[tex]=\frac{(n+1)^n}{n!})*(1+(n+1)^{-1})(1+(n+1)^{-n})[/tex]

[tex]=\frac{(n+1)^n}{n!}*(1+(n+1)^n+(n+1)^{-1}+(n+1)^{-n+1}[/tex]

[tex]=\frac{(n+1)^n}{n!}+\frac{1}{n!}+\frac{(n+1)^n}{(n+1)!}+\frac{(n+1)^n}{(n+1)^{n+1})n!}[/tex]

[tex]=\frac{(n+1)^{n+1}+(n+1)+(n+1)^n+1)}{(n+1)!}[/tex]

only i can't find any way to get to (n+2)^(n+1)/(n+1)! from there :(

can anyone help?

thanks in advance :)

ps. Happy New Year to those it applies t

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Yet another induction proof

**Physics Forums | Science Articles, Homework Help, Discussion**