1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Yo-yo rolling without slipping

  1. Feb 3, 2013 #1
    1. The problem statement, all variables and given/known data
    T1hMEW3.png


    2. Relevant equations
    Angular momentum/fixed axis rotation


    3. The attempt at a solution
    Hi guys. I'm having a bit of trouble visualizing what will happen so if you could first indulge me with the mechanics. Imagine there was no friction to begin with; since the force is acting on the rope wound around the circular axle, will the yo - yo only slide to the right or will it slide to the right + roll backwards due to the pulling of the rope that is wound around the axle? It seems like it should be the second if I try to imagine it (don't have a yo - yo with me unfortunately :[). Now, regardless of that, the center of mass velocity will be directed to the right I think; was only assuming this based on physical grounds that the yo - yo will slide to the right but if the pulling of the rope around the axle causes it to roll backwards then idk if it will slide to the right or not anymore so if someone could clarify this that would be great. Going with that assumption, the friction force would be directed to the left. The equations of motion are [itex]ma = F - f = F - \mu mg[/itex] and, this is another point I would like someone to clarify for me because I assumed that since we want it to roll without slipping the rotation must be directed clockwise so that the tangential velocity at the contact point (left) is directed opposite to the assumed CM velocity direction (right) but I'm not sure if I'm supposed to assume this a priori or if its somehow supposed to come out of the equations at the end so if someone could clarify this as well, [itex]-\frac{1}{2}mR^{2}\alpha = -\frac{1}{2}mRa = Fb - \mu mgR[/itex] and putting all this together gives [itex]F = \frac{3\mu mg}{(1 + \frac{2b}{R})}[/itex]. If you could clarify all the things I asked for that would be great. Thanks!
     
  2. jcsd
  3. Feb 3, 2013 #2

    SammyS

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    I'll answer some of your questions.

    Yes, it is the second.

    The Net force is to the right. (It's the only horizontal force.) The torque w.r.t the center of mass is counter-clockwise.

    Yes, the frictional force is to the left.
    (Can't you rig up something to emulate a yo-yo? Try to have b/R a fairly small fraction.)

    If the frictional force is sufficient to keep the yo-yo from slipping then look at the torque w. r. t. the point of contact of the yo-yo with the table. It's fairly clear then that the yo-yo will rotate clockwise, and move to the right.

    I know that doesn't answer all of your questions. Hopefully it's a useful start.
     
  4. Feb 4, 2013 #3
    Re: Yo-yo rolling without slippinh

    Hi Sammy, thanks for responding. So we agree the applied tangential force causes the yo - yo to roll backwards (counter clockwise) due to the pulling of the string around the axle. What I can't reconcile is if this means the center of mass velocity will also be directed backwards. Is it possible for the yo - yo to be rolling backwards but have the center of mass velocity simultaneously be directed along the direction of the applied tangential force (forward) or must the center of mass velocity be directed backwards since that is the direction the yo - yo will start rolling? I just can't picture something rolling and sliding at the same time. If you have a wheel rolling without slipping along a flat road for example then the center of mass velocity is directed in the direction of rolling (both are forward) and it seems here if the yo - yo rolls backward due to the pulling of the string around the axle, the center of mass velocity would have to be directed backwards as well (and this way it can cancel out with the tangential velocity at the contact point which will point forward if we want no slipping). If there is no friction then the yo - yo will simply slide forward with no rolling, so that the CM velocity is directed forward for sure, (right? I'm pretty sure of that) but if there IS friction then the applied force will cause it to roll backwards but I can't decide logically which direction the center of mass velocity will be directed in this case which I need to know in order to determine the direction of friction. This is where I need help. Thanks a ton!
     
    Last edited: Feb 4, 2013
  5. Feb 4, 2013 #4

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Re: Yo-yo rolling without slippinh

    It might help if you mentally replace the entire yo-yo by a stick, initially upright, stretching from the point of contact on the ground to the yo-yo's centre. The string is attached to it at exactly the same point as it was to the yo-yo. Instantaneously, the stick will move just as the yo-yo would have done.
    Another way to check it is to observe that the string will certainly move to the right. Since R > b, this means the yo-yo must roll to the right.
     
  6. Feb 4, 2013 #5

    SammyS

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    Re: Yo-yo rolling without slippinh

    "Imagine there was no friction ..." This is the case for which I agreed the yo-yo rolled counter-clockwise, i.e., backwards.

    I also said that if the friction was sufficient to keep the yo-yo from slipping on the surface, then the yo-yo would roll clockwise . --- The yo-yo rolls forward as it moves to the right.

    By the way, if the frictional force is just right, compared to the applied force, then the yo-yo would slide along without rotating.
     
  7. Feb 4, 2013 #6
    Re: Yo-yo rolling without slippinh

    What I don't get is why the CM velocity must be directed in the same direction as the applied force. Assuming it moved to the right and if there was friction why would it roll forward instead of rolling backwards? Wouldn't that only be the case if the torque due to friction was greater than the torque due to the applied force?
     
  8. Feb 4, 2013 #7

    SammyS

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    Re: Yo-yo rolling without slippinh

    Can the force of friction (which is to the left in this case) be larger than the applied force?
     
  9. Feb 4, 2013 #8
    Re: Yo-yo rolling without slippinh

    It has to be less if we want the yo - yo to start moving don't we?
     
  10. Feb 4, 2013 #9

    tms

    User Avatar

    Re: Yo-yo rolling without slippinh

    When the yo-yo rolls, about which axis is it rolling, instantaneously? What torque does the frictional force exert around that axis?
     
  11. Feb 4, 2013 #10
    Re: Yo-yo rolling without slippinh

    Those don't answer my specific questions. The torque due to friction is -fR if friction is assumed to be directed to the left; it is rotating about the z axis.
     
  12. Feb 4, 2013 #11

    tms

    User Avatar

    Re: Yo-yo rolling without slippinh

    I am trying to lead you to the answer by asking questions that will make you think in the right direction.
    Where does friction act? The friction that is causing the rolling, that is. The friction between the yo-yo and the table.

    By the z-axis I assume you mean an axis perpendicular to the page. The question is where does that axis intercept the page.
     
  13. Feb 5, 2013 #12
    Re: Yo-yo rolling without slippinh

    Ok thanks but I just don't get why the yo - yo must SLIDE to the right (i.e. why the CM velocity is directed to the right)? If I can clear that up then I get the rest of the problem because if it slides to the right friction is directed to the left and then it's just a matter of making the torque due to friction greater than the torque due to the applied force so that the yo - yo rolls clock - wise and allows for the CM velocity to cancel out with the tangential velocity at the contact point and we can then replace alpha with a/ R due to no slipping. That is all correct right? I just need that first point clarified.
     
  14. Feb 5, 2013 #13

    tms

    User Avatar

    Re: Yo-yo rolling without slippinh

    I'll ask again: Where does friction act? (The friction that is causing the rolling, that is. The friction between the yo-yo and the table.) What axis is the yo-yo rotating about (instantaneously)?
     
  15. Feb 5, 2013 #14
    Re: Yo-yo rolling without slippinh

    Friction acts at the point of contact of the yo - yo with the ground. The instantaneous axis of rotation goes through the center
     
  16. Feb 5, 2013 #15

    SammyS

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    No that's not the instantaneous axis of rotation if the friction is sufficient to keep the yo-yo from slipping.

    I pretty much covered this back in post #2.:
     
  17. Feb 5, 2013 #16

    tms

    User Avatar

    Re: Yo-yo rolling without slippinh

    Right.
    Wrong. The yo-yo is rolling on the ground; rolling objects instantaneously rotate about the point in contact with the surface they are rolling on.

    What, then, is the torque due to friction?
     
  18. Feb 5, 2013 #17
    Re: Yo-yo rolling without slippinh

    You are interchangeably using the word axis and the instantaneously co - moving reference frame. If you are using them synonymously then there is no absolute "axis of rotation" i.e. family of instantaneously co - moving reference frames. I can just as easily take my coordinate system's origin to be fixed to the center of the disk, for which there is only one element in the family of instantaneously co - moving reference frames, and call that, according to your terminology, the "axis of rotation". You can't state one "axis" is wrong over the other if you choose to use the word in that sense. Of course for pre - calculation intuitive purposes, going with Sammy's post, if I take an element of the family of ICRF's and attach one to each point the yo - yo and ground come into contact along the trajectory, it is easier to see the net torque is clock - wise in each such frame and hence the tangential velocity points to the left so we, in order to have no slipping, we would have to require the CM velocity to be directed to the right (Sammy could you clarify if this is indeed what you were saying because this is how I pictured it). Thank you all.
     
  19. Feb 5, 2013 #18

    rcgldr

    User Avatar
    Homework Helper

    Regardless if the yo-yo is sliding or rolling, the yo-yo's axis of rotation is at the center of the yo-yo.
     
  20. Feb 5, 2013 #19

    ehild

    User Avatar
    Homework Helper
    Gold Member

    Re: Yo-yo rolling without slippinh

    You can take the yo-yo rolling either about the CM or about the instantaneous axis of rotation.
    The yo-yo rolls clockwise, the CM moves to the right. There are two forces acting: F, and the force of static friction f at the contact point with the ground. Both F and the friction f have a torque with respect to the CM. Writing up the equations both for linear acceleration of the CM and angular acceleration of rotation about the CM and using the rolling condition acceleration = angular acceleration X Radius we can solve the equations for the force of friction which can not be greater than μMg.

    ehild
     
  21. Feb 5, 2013 #20

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    No, if it's rolling then the point which is instantaneously stationary is the point of contact with the ground. That is therefore the axis of rotation. Yes, you can represent the motion as the sum of a linear motion and a rotational one, but there are many ways to do that, and making the centre of the yo-yo the axis of that rotation is an arbitrary choice.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Yo-yo rolling without slipping
  1. The yo-yo (Replies: 4)

Loading...