I am reading "The linear algebra a beginning graduate student ought to know" by Golan, and I encountered a puzzling statement:
Let V be a vector space (not necessarily finitely generated) over a field F. Prove that there exists a bijective function between any two bases of V. Hint: Use transfinite induction.
If V is generated by a finite set (with n elements), then I know how to prove that any basis has at most n elements, and thus all bases will have the same number of elements. But for infinitedimensional vector spaces, I'm confused. How do I use transfinite induction to prove that there is a bijective correspondence between two bases of V if V is infinitedimensional?
