1. The problem statement, all variables and given/known data
I'm reading the proof of a theorem and the author claims w/o justification that a weakly lower semicontinuous function (w.l.s.c.) f:C>R attains its min on the convex weakly compact subset C of a normed space E.
At first I though I saw why: Let a be the inf of f on C and x_n be a sequence in C such that f(x_n) > a. Since C is weakly compact, we can find a weakly convergent subsequence x_n_k>x, and because f is w.l.s.c., we will have f(x)<=a, thus f(x)=a.
But what reason do we have to believe that C is weakly sequentially compact, so that the bold part above is justified??
(By "weakly" I mean "under the weak topology [tex]\sigma(C,C^*)[/tex]".)
