View Single Post
Raphie
#1
Nov29-10, 12:00 PM
P: 153
for...

p'_n = {1 Union Prime Numbers}
M_n = n-th Mersenne Number (2^n - 1)
T_n = n-th Triangular Number (n^2 + n)/2

x = {0,1,2,3,13} --> F_(0, 1/2, 3, 4, 7) for F_n = n-th Fibonacci Number

Then...

((p'_x*p'_2x)*(M_x - (T_x - 1))) / ((T_(M_x) - T_(T_x - 1)) is in N

EXPANSION
((1*1)*(0 + 1))/((0^2 + 0)/2 - (-1^2 -1)/2) = 1
((2*3)*(1 - 0))/((1^2 + 1)/2 - (0^2 + 0)/2) = 6
((3*7)*(3 - 2))/((3^2 + 3)/2 - (2^2 + 2)/2) = 7
((5*13)*(7 - 5)) / ((7^2 + 7)/2 - (5^2 + 5)/2) = 10
((41*101)*(8191 - 90))/((8191^2 + 8191)/2 - (90^2 + 90)/2) = 1

|{-1, 0, 2, 5, 90}| = 1, 0, 2, 5, 90

... where 1, 0, 2, 5, & 90 is the complete set of indices associated with the Ramanujan-Nagell Triangular Numbers...

T_01 = 1
T_00 = 0
T_02 = 3
T_05 = 15
T_90 = 4095

I'm pretty positive these are the only integers for which the above formula holds...

e.g.

((43*135)*(16383 - 104)) / ((16383^2 +16383)/2 - (104^2 + 104)/2) = 645/916 --> .70
((47*176)*(32767 - 119)) / ((32767^2 + 32767)/2 - (119^2 + 119)/2) = 16544/32887 --> .50
((53*231)*(65535 - 135)) / ((65535^2 + 65535)/2 - (135^2 + 135)/2) = 24486/65671 --> .37
((59*297)*(131071 - 152)) / ((131071^2 + 131071)/2 - (152^2 + 152)/2) = 17523/65612 --> 0.26
((61*385)*(262143 - 170)) / ((262143^2 + 262143)/2 - (170^2 + 170)/2) = 23485/131157 --> .18

For the special cases of x = 0, 1, 2 & 13, where par_n denotes "partition #," then the following statement also holds...

((p'_x*par_x)*(M_x - (T_x - 1))) / ((T_(M_x) - T_(T_x - 1)) is in N

Worth noting is the relationship between the following numbers and Multiply Perfect Numbers:

((0^2 + 0)/2 = 0; sigma (0) = 0* (n-fold Perfect)**
((1^2 + 1)/2 = 1; sigma (1) = 1 (1-fold Perfect)
((3^2 + 3)/2 = 6; sigma (6) = 12 (2-fold Perfect)
((7^2 + 7)/2 = 28; sigma (28) = 56 (2-fold Perfect)
((8191^2 + 8191)/2 = 33550336; sigma (33550336) = 67100672 (2-fold Perfect)

* Assumes divisors of an integer must divide that integer and be less than or equal to that integer...
** I don't know if 0 is typically considered "Multiply-Perfect," but I see no reason for it not to be based upon the above definition.

Best,
Raphie

P.S. The above is a "somewhat" accidental observation that followed from exploratory investigations into the following (dimensionless) numerical equivalency for the Josephson Constant Derivation of Planck's Constant where 67092479/8191 = Carol_13/Mersenne_13 = C_13/M_13 for Carol Numbers = M_n^2 - 2, and 9.10938215*10^-31 is the mass of an electron.

sqrt ((4*pi^2*9109.38215)/(67092479/8191) ~ 6.62606776
Related Link: Planck's Constant (Determination) http://en.wikipedia.org/wiki/Planck_...#Determination
Phys.Org News Partner Science news on Phys.org
Wildfires and other burns play bigger role in climate change, professor finds
SR Labs research to expose BadUSB next week in Vegas
New study advances 'DNA revolution,' tells butterflies' evolutionary history