View Single Post
lavinia
#1
Jul22-11, 11:21 PM
Sci Advisor
P: 1,716
The metric ds = |dz|/(1 + |z|^2) has constant positive Gauss curvature equal to 4 and extends to the complex plane plus the point at infinity. How does this metric relate to the usual metric of constant Gauss curvature computed from the unit sphere in Euclidean 3 space?
Phys.Org News Partner Science news on Phys.org
Bees able to spot which flowers offer best rewards before landing
Classic Lewis Carroll character inspires new ecological model
When cooperation counts: Researchers find sperm benefit from grouping together in mice