View Single Post
fauboca
fauboca is offline
#1
Feb21-12, 09:45 AM
P: 159
Suppose [itex]f : \mathbb{C}\to \mathbb{C}[/itex] is continuous everywhere, and is holomorphic at every point except possibly the points in the interval [itex][2, 5][/itex] on the real axis. Prove that f must be holomorphic at every point of C.

How can I go from f being holomorphic every except that interval to showing it is holomorphic at that interval? I am assuming it has to be due to continuity.

But there are continuous functions that aren't differentiable every where.
Phys.Org News Partner Science news on Phys.org
Simplicity is key to co-operative robots
Chemical vapor deposition used to grow atomic layer materials on top of each other
Earliest ancestor of land herbivores discovered