View Single Post
Feb21-12, 09:45 AM
P: 159
Suppose [itex]f : \mathbb{C}\to \mathbb{C}[/itex] is continuous everywhere, and is holomorphic at every point except possibly the points in the interval [itex][2, 5][/itex] on the real axis. Prove that f must be holomorphic at every point of C.

How can I go from f being holomorphic every except that interval to showing it is holomorphic at that interval? I am assuming it has to be due to continuity.

But there are continuous functions that aren't differentiable every where.
Phys.Org News Partner Science news on
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100