View Single Post
Mar28-12, 07:34 AM
P: 2,466
If I have [itex] \int e^{2x}sin(x)sin(2x) [/itex]
And then I use Eulers formula to substitute in for the sine terms.
So I have [itex] \int e^{2x}e^{ix}e^{2ix} [/itex]
then I combine everything so i get
[itex] e^{(2+3i)x} [/itex]
so then we integrate the exponential, so we divide by 2+3i
and then i multiply by the complex conjugate. now since sine is the imaginary part of his
formula I took the imaginary part when I back substituted for e^(3i)
but I didn't get the correct answer doing this, so am i not using Eulers formula correctly?
Phys.Org News Partner Science news on
FIXD tells car drivers via smartphone what is wrong
Team pioneers strategy for creating new materials
Team defines new biodiversity metric