View Single Post
saminator910
saminator910 is offline
#1
Dec17-12, 09:08 PM
P: 78
I am familiar with standard distance-time models for paths of projectiles in perfect conditions, ie, where the curvature doesn't play a role, and where gravity is constant no matter the height. My question is what if you launch a projectile so high that the curvature of earth plays a role, and gravity varies as you increase and decrease height, is there and way to model it's motion, say a distance to surface-time equation? It would probably be similar to basic ones like s(t)=.5at^2+v*t, but since the acceleration changes over time it becomes difficult. It seems the acceleration at any point would be (Fg-Fc)/m (force of gravity minus force centripital, divided my mass), but then you get distance in the equation twice... Also, since (mv^2)/r = Fc how would you know the tangential velocity? Do equations already exist for this?
Phys.Org News Partner Physics news on Phys.org
Physicists design quantum switches which can be activated by single photons
'Dressed' laser aimed at clouds may be key to inducing rain, lightning
Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser