View Single Post
Wentu
#1
Jan14-13, 07:20 AM
P: 12
Hello

I may well be all wrong about this but I am trying to understand from a microscopic point of view why Entropy is a concave function of internal energy. I found this in the following .pdf:

http://physics.technion.ac.il/ckfind...potentials.pdf

I started from this wikipedia article and i understand why, if the particles composing the system have a limited number of available energy levels, then S(E) first increases and then decreases.

But saying that S(E) is concave should mean:
- when the temperature is T1, if i give a dE to the system its entropy increases of dS1
- when the tempereture is T2>T1, if I give the same dE to the system, its Entropy increases only of dS2 < dS1

I cannot see this with single particles.
If I have N particles in their lowest energy state there is only one microstate: all the particles are still.
If I give to this system the tiniest possible amount of energy, it will be taken by just one of the particle, so the possible microstates are N.
If I add another dE, the possible microstates should be N + N(N-1) = N^2 ... that is or one particle gets both dE or two different particles get it. Every time I add a dE I should increase the power of N.
Now, if the entropy is somehow proportional to the logarithm of the number of microstates, I should get S proportional to K ln(N^E), that is, something that is proportianl to E... taht is, no concavity

I am sure I am getting all this wrong... could you please help me understand this?

Thank You

Wentu
Phys.Org News Partner Physics news on Phys.org
Engineers develop new sensor to detect tiny individual nanoparticles
Tiny particles have big potential in debate over nuclear proliferation
Ray tracing and beyond