View Single Post
Cole A.
Cole A. is offline
#1
Feb5-13, 12:22 PM
P: 12
I'm having trouble understanding the relationship between a system's energy level and its stability (in a general sense).

My understanding is that chemical and physical systems experience a driving force that pushes them toward the lowest possible energy state (ignoring quasi-steady states and those things). Biochemistry calls this the Gibbs energy of reaction when the systems are chemical. The driving force represents the amount of non-PV (or useful) work that might be done by the system in moving toward that lowest energy level, and thus the system does the max amount of non-PV work by moving from an arbitrary energy level to the Gibbs energy minimum, or the energy level characterized by

[tex]
\begin{equation*}
\frac{dG}{dt} = 0.
\end{equation*}
[/tex]

But I do not understand why the driving force exists (i.e. why it is favorable thermodynamically for a system to minimize its free energy). In other words, I cannot tell from the the laws of thermodynamics why natural systems tend toward lowest energy states.

And I also do not understand why a stable system corresponds to a low-energy one. My engineering prof. calls the state of lowest energy the state of maximum stability. Stability is a term that is tossed around a lot it seems, but I don't really understand what it means.

P.S. If the best answer would be something along the lines of "take a proper thermodynamics course," that would be fine.

Thanks
Phys.Org News Partner Physics news on Phys.org
Physicists design quantum switches which can be activated by single photons
'Dressed' laser aimed at clouds may be key to inducing rain, lightning
Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser