View Single Post

Recognitions:
Homework Help
 Quote by eljose ..in fact if you knew $$\pi(x^{a})$$ with a total error O(x^d) by setting a=Ad and making A--->oo (infinite) the total error would be e=1/A O(x^e) with e the smallest positive number...
This looks like nonsense to me. If you can find $$\pi(x^{a})$$ with a total error O(x^d) then your a and d are fixed. As this A changes, your error analyisis will no longer be correct. Before you tried to do some kind of change of variables to make the error look smaller, but actually did nothing at all, is this what you're doing again?
No you haven't, not in any number theory paper at least. You'll often see an error like $$O(x^{1+\epsilon})$$ and they say you can take any $$\epsilon>0$$. They are not saying that $$\epsilon$$ is an "infintessimal number", just that the big O bound of that form holds for any possible fixed $$\epsilon>0$$ that you like, though the big O constant may depend on epsilon (sometimes they write $$O_\epsilon (x^{1+\epsilon})$$ to make this dependance explicit, but not usually).