Register to reply

Problem demonstration

by JasonPhysicist
Tags: demonstration
Share this thread:
JasonPhysicist
#1
Jan22-07, 09:09 PM
P: 12
Here goes a theorem and its demonstration(attachment) .Sorry,I couldn't find it in english,so it's in portuguese).

We have that the intervals In=[An,Bn] wich are closed and limited.


What I want to know is: what consideration(s) is/are NOT valid on the demonstration,when we consider an open intervals?

Thank you in advance.
Attached Files
File Type: doc 1.doc (42.0 KB, 3 views)
Phys.Org News Partner Science news on Phys.org
Study links polar vortex chills to melting sea ice
Lab unveil new nano-sized synthetic scaffolding technique
Cool calculations for cold atoms: New theory of universal three-body encounters
HallsofIvy
#2
Jan23-07, 07:26 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,569
This is the "nested interval property", used to prove that any closed and bounded set of real numbers is compact.

"Let [itex][a_n,b_n][/itex] be a nested set of intervals (nested: each interval is inside the previous interval [itex]a_n\le a_{n+1}\le b_{n+1}\le b_n[/itex]). Then there exist a real number [itex]\zeta[/itex] contained in the intersection of all the intervals. Further, if [itex]lim_{n\rightarrow \infty}b_n-a_n= 0[/itex], that intersection consists of the single number [itex]\zeta[/itex].

It can be shown that, for all n, [itex]a_n\le b_1[/itex] so that [itex]b_1[/itex] is an upper bound on the set [itex]{a_n}[/itex] and so, by the least upper bound property that set has a least upper bound (sup). Let [itex]\zeta[/itex] be [itex]sup{a_n}[/itex]. Then it can be shown that [itex]\zeta[/itex] is a lower bound on the set [itex]{b_n}[/itex] and, so lies in all intervals [itex][a_n, b_n][/itex]

If the intervals are not closed, then it might happen that that [itex]\zeta[/itex] is NOT in some or all of the intervals.

For example, suppose [itex](a_n, b_n)= (0, \frac{1}{n})[/itex]. The set [itex]{a_n}[/itex] is the set {0} which has 0 as its "least upper bound. But 0 is not in any of those intervals. The same example with closed sets [itex][0, \frac{1}{n}][/itex] would give the same set of "left endpoints" {0} having the same sup, 0, but now 0 is contained in each interval. [itex][0, \frac{1}{n}][/itex] has intersection {0} while [itex](0, \frac{1}{n})[/itex] has empty intersection.


Register to reply

Related Discussions
I need to create a demonstration.. General Physics 2
Demonstration homework help Introductory Physics Homework 1
Help with physics demonstration Calculus & Beyond Homework 4