Register to reply

L=sup{f''(0)|f in the set ...}

by niklas
Tags: lsupf0|f
Share this thread:
niklas
#1
Jun5-08, 06:23 PM
P: 4
Let [tex]D\subset\mathbb{C}[/tex] be the unitdisc and [tex]F=\{f:D\rightarrow D\,|\,\forall z\in D\partial_{\bar{z}}f=0\}[/tex], calculate [tex]L=\sup_{f\in F}|f''(0)|[/tex]. Show that there is an [tex]g\in F[/tex] with [tex]g''(0)=L[/tex].
I am a bit stuck. But I think that it might be an idea to start with Cauchy estimate. Any other ideas?
Phys.Org News Partner Science news on Phys.org
Bees able to spot which flowers offer best rewards before landing
Classic Lewis Carroll character inspires new ecological model
When cooperation counts: Researchers find sperm benefit from grouping together in mice
niklas
#2
Jun5-08, 07:31 PM
P: 4
[tex]
|a_n|\leq\frac{1}{2\pi}\frac{M}{r^3}l=\frac{M}{r^2}\quad M=\max_{|z|<r<1}|f(z)|=\sup_{z\in\partial D_r}|f(z)|
[/tex]
?
niklas
#3
Jun5-08, 07:40 PM
P: 4
=1??


Register to reply