Register to reply

L=sup{f''(0)|f in the set ...}

by niklas
Tags: lsupf0|f
Share this thread:
niklas
#1
Jun5-08, 06:23 PM
P: 4
Let [tex]D\subset\mathbb{C}[/tex] be the unitdisc and [tex]F=\{f:D\rightarrow D\,|\,\forall z\in D\partial_{\bar{z}}f=0\}[/tex], calculate [tex]L=\sup_{f\in F}|f''(0)|[/tex]. Show that there is an [tex]g\in F[/tex] with [tex]g''(0)=L[/tex].
I am a bit stuck. But I think that it might be an idea to start with Cauchy estimate. Any other ideas?
Phys.Org News Partner Science news on Phys.org
Wearable 4MM jetpack tested on speed, agility for runners (w/ Video)
How did evolution optimize circadian clocks?
Corn spots: Study finds important genes in defense response
niklas
#2
Jun5-08, 07:31 PM
P: 4
[tex]
|a_n|\leq\frac{1}{2\pi}\frac{M}{r^3}l=\frac{M}{r^2}\quad M=\max_{|z|<r<1}|f(z)|=\sup_{z\in\partial D_r}|f(z)|
[/tex]
?
niklas
#3
Jun5-08, 07:40 PM
P: 4
=1??


Register to reply