L=sup{f''(0)|f in the set ...}


by niklas
Tags: lsupf0|f
niklas
niklas is offline
#1
Jun5-08, 06:23 PM
P: 4
Let [tex]D\subset\mathbb{C}[/tex] be the unitdisc and [tex]F=\{f:D\rightarrow D\,|\,\forall z\in D\partial_{\bar{z}}f=0\}[/tex], calculate [tex]L=\sup_{f\in F}|f''(0)|[/tex]. Show that there is an [tex]g\in F[/tex] with [tex]g''(0)=L[/tex].
I am a bit stuck. But I think that it might be an idea to start with Cauchy estimate. Any other ideas?
Phys.Org News Partner Science news on Phys.org
Going nuts? Turkey looks to pistachios to heat new eco-city
Space-tested fluid flow concept advances infectious disease diagnoses
SpaceX launches supplies to space station (Update)
niklas
niklas is offline
#2
Jun5-08, 07:31 PM
P: 4
[tex]
|a_n|\leq\frac{1}{2\pi}\frac{M}{r^3}l=\frac{M}{r^2}\quad M=\max_{|z|<r<1}|f(z)|=\sup_{z\in\partial D_r}|f(z)|
[/tex]
?
niklas
niklas is offline
#3
Jun5-08, 07:40 PM
P: 4
=1??


Register to reply