Register to reply

Reflection of an Integer

by cepheid
Tags: None
Share this thread:
cepheid
#1
Sep1-07, 12:38 AM
Emeritus
Sci Advisor
PF Gold
cepheid's Avatar
P: 5,197
I haven't encountered this before. I'm not sure how to approach it. At this point it's not even clear to me why the result should only be divisible by one number in *every* case.

The reflection of a positive integer is obtained by reversing its
digits. For example, the reflection of 321 would be 123. The
difference between a 5 digit integer and its reflection must be
divisible by which of the following?

A. 2
B. 4
C. 5
D. 6
E. 9
Phys.Org News Partner Mathematics news on Phys.org
'Moral victories' might spare you from losing again
Fair cake cutting gets its own algorithm
Effort to model Facebook yields key to famous math problem (and a prize)
Werg22
#2
Sep1-07, 01:10 AM
P: 1,520
The number abcde is really [tex]10^{4}a + 10^{3}b + 10^{2}c + 10^{1}d + 10^{0}e [/tex]. You know what to do...
cepheid
#3
Sep1-07, 02:17 AM
Emeritus
Sci Advisor
PF Gold
cepheid's Avatar
P: 5,197
so the difference becomes...

10^4 (a-e) + 10^3 (b-d) + 10^2 (c-c) + 10 (d-b) + (e-a)

= (10^4 - 1)(a-e) + (10^3 - 10)(b-d)

= 9999(a-e) + 990(b-d)

I guess that means the answer is divisible by 9. Did I do this right?

Werg22
#4
Sep1-07, 02:28 AM
P: 1,520
Reflection of an Integer

Yes.
CRGreathouse
#5
Sep1-07, 03:34 PM
Sci Advisor
HW Helper
P: 3,684
That's it. Of course, with multiple choice looking for counterexamples might even be faster... heh.
Edgardo
#6
Sep2-07, 04:20 AM
P: 685
Hi Cepheid,

I find such problems interesting. Where did you find it?
Do you have a website for it?
cepheid
#7
Sep2-07, 05:32 PM
Emeritus
Sci Advisor
PF Gold
cepheid's Avatar
P: 5,197
Edgardo,

This is a problem from a practice GRE exam. These exams are administered by ETS. However, I think that such problems are also common in math contests that are intended for junior high/high school students. Try a search for math contests on the net.
ice109
#8
Sep2-07, 07:26 PM
P: 1,705
Quote Quote by cepheid View Post
Edgardo,

This is a problem from a practice GRE exam. These exams are administered by ETS. However, I think that such problems are also common in math contests that are intended for junior high/high school students. Try a search for math contests on the net.
this is in the math GRE?
pwrstick
#9
Dec20-08, 01:51 AM
P: 1
Quote Quote by ice109 View Post
this is in the math GRE?
Yes it is, I got it in the practice section right now as the third question, and if you don't know your first 10 questions are the most important (28 total, 45 mins to complete). Suffice to say this test is going to kick my *** at 12PM tomorrow... but hey, I'm a psych major.
uart
#10
Dec20-08, 06:34 AM
Sci Advisor
P: 2,751
And note that this is true not only for 5 digit numbers, it's true for all natural numbers.

For any natural number the digit sum and the original number are equivalent modulo nine. Since the number and it's reflection both have the same digit sum it follows that there are equal modulo 9, hence their differnece must be a multiple of nine.
cepheid
#11
Dec21-08, 12:52 AM
Emeritus
Sci Advisor
PF Gold
cepheid's Avatar
P: 5,197
Quote Quote by ice109 View Post
this is in the math GRE?
Quote Quote by pwrstick View Post
Yes it is
Somehow I doubt that such questions are asked in the GRE math *subject test*. This problem was from the math (quantitative reasoning) section of a GRE *general* test (which, I think, is what pwrstick was talking about).
cepheid
#12
Dec21-08, 12:59 AM
Emeritus
Sci Advisor
PF Gold
cepheid's Avatar
P: 5,197
Quote Quote by uart View Post
For any natural number the digit sum and the original number are equivalent modulo nine.
How do you know this? I mean, I convinced myself of it by figuring that the difference between the number and the sum of the digits can be expressed as:

Sum over all digits{ [(some power of ten) - 1]digit }

Therefore the difference between the actual number and its digit sum will always be a multiple of nine, hence they are equivalent modulo nine.

Is there a simpler/more obvious way of explaining your statement, though?
adriank
#13
Dec21-08, 02:49 AM
P: 534
Any power of ten is congruent to 1 (mod 9).
uart
#14
Dec21-08, 07:27 AM
Sci Advisor
P: 2,751
Quote Quote by cepheid View Post
How do you know this?
Just elaborating on what Adrian said.

[tex]10^n = 9*(\underbrace{111.....1}_{\mbox{n ones}}) + 1 = 9 k_n +1[/tex].

So the quantity represented by the nth digit (in a decimal number) is [itex]10^n d_n = 9k_n d_n + d_n[/itex]. That is, for each digit the quantity represented by that digit is congruent to the digit itself (mod 9).

Cepheid, this property is used in a wide variety of "number tricks" and was used for centuries before computers and calculators as a quick easy "checksum" for testing the integrety of long hand calculations. See casting out nines : http://en.wikipedia.org/wiki/Casting_out_nines
cepheid
#15
Dec22-08, 12:38 AM
Emeritus
Sci Advisor
PF Gold
cepheid's Avatar
P: 5,197
Hey uart,

Thanks for the link and for adding something useful to a dredged up thread from a year ago.


Register to reply

Related Discussions
Difference between Identical , Equal , Equivalent Calculus & Beyond Homework 9
Regarding Total Internal Reflection Introductory Physics Homework 2
X is an integer General Discussion 3