Register to reply

X Prize Clean Aviation: $10 million

by mheslep
Tags: aviation, clean, million, prize
Share this thread:
FredGarvin
#37
Jan21-10, 05:34 PM
Sci Advisor
FredGarvin's Avatar
P: 5,095
Quote Quote by mheslep View Post
Is there a standard approach for characterizing the noise?
I am not quite sure what you mean by standard approach. There is the area of aeroacoustics in which we look at the noise contributions due to aerodynamic influences. It is a relatively new area but a fair amount is known. In this case, it was mentioned that loading of the blades is a factor, as is relative mach number of each blade and blade tip. The spreding/attenuation over distances is very custom for each application in that the speeds and frequencies are always different. Plus, since this is unshrouded you don't have issues arising from waveguides, i.e. ducts. Things are different when a blade tip is sonic or supersonic. I can only assume they would be sonic, which means they will naturally attenuate/decay with increasing radius from the source.

There is a FAR (I can not remember the number off the top of my head) that governs the testing of noise signatures around airports. It is pretty detailed and measurements are required to simulate an aircraft arriving and departing and at altitudes, of I believe, 400 ft. It has been a while since I have read that FAR. I think it wouldn't be a killer for this application, but it would definitely be a concern.
mheslep
#38
Jan21-10, 06:07 PM
PF Gold
P: 3,073
Quote Quote by mgb_phys View Post
For everybody else - there is an excellent and entertaining talk by Sebastian Thrun from Stanford's team.

http://video.google.com/videoplay?do...17128412883394
Seen it many times.

Thrun's team setup next to ours in the semi-final, so I had the opportunity to talk him and his team over several days. He's a fantastic engineer, great sense of humor.
mheslep
#39
Jan21-10, 06:19 PM
PF Gold
P: 3,073
Quote Quote by FredGarvin View Post
I am not quite sure what you mean by standard approach.
I was asking for indulgence in explaining how characterization of prop acoustics - fundamentals. Googling wasn't providing any useful fundamentals. This is a start:

There is the area of aeroacoustics in which we look at the noise contributions due to aerodynamic influences. It is a relatively new area but a fair amount is known. In this case, it was mentioned that loading of the blades is a factor, as is relative mach number of each blade and blade tip. The spreding/attenuation over distances is very custom for each application in that the speeds and frequencies are always different. Plus, since this is unshrouded you don't have issues arising from waveguides, i.e. ducts. Things are different when a blade tip is sonic or supersonic. I can only assume they would be sonic, which means they will naturally attenuate/decay with increasing radius from the source.
Well eventually I wanted to estimate dBl / distance given some prop assumptions. E.g. vehicle developing ~1000 lbs thrust at take off, RPM x, tip speed sonic, etc, add in latest
prop noise reduction techniques, then compare with known noise of 200HP turbine or piston engine.
mgb_phys
#40
Jan21-10, 06:20 PM
Sci Advisor
HW Helper
P: 8,955
Quote Quote by mheslep View Post
Thrun's team setup next to ours in the semi-final, .... He's a fantastic engineer, great sense of humor.
Rather letting the side down, as a German engineering prof though - stereotype-wise ;-)
mheslep
#41
Jan21-10, 06:31 PM
PF Gold
P: 3,073
Quote Quote by mgb_phys View Post
Rather letting the side down, as a German engineering prof though - stereotype-wise ;-)
Well he's been in the US for a long time. Then, Einstein apparently had a silly streak.
Brian_C
#42
Jan21-10, 06:37 PM
P: 261
Quote Quote by mheslep View Post
Sorry I don't follow. What source of power are you suggesting, if not an electric motor? Edit: Perhaps you are asking: why use an electric motor instead of a traditional gas turbine? Electric motor can be >95% efficient, is quiet, as you mentioned above, and can run on electric charge that may have been generated on the ground and stored in the aircraft.

Post #2, for purposes of this prize. 11 metric tons of battery per 850 mile leg.
I would suggest obtaining a formal education in the subject before making such outlandish claims. That 95% efficiency won't do you much good if it comes with a huge weight penalty. Gas turbine engines are really unparalleled when it comes to thrust/weight ratio and energy density.
mheslep
#43
Jan21-10, 07:01 PM
PF Gold
P: 3,073
Quote Quote by Brian_C View Post
I would suggest obtaining a formal education in the subject before making such outlandish claims.
Thanks, I think I have a pretty good one, and a license to use it, though it is limited on the subject of aerodynamics. To be constructive, could you show how those numbers (11 metric tons / 850 miles) are outlandish? I think I've crunched and shown the basic numbers if you backtrack the post.
That 95% efficiency won't do you much good if it comes with a huge weight penalty. Gas turbine engines are really unparalleled when it comes to thrust/weight ratio and energy density.
Gas turbines are not an option for the prize, hence the thread topic "CLEAN AVIATION". Please see the OP. Also the unparalleled claim about gas turbines holds for existing engines, but it is theoretically not correct. Gas turbines max out at 7-8 kW / kg, but:
Quote Quote by UK Drives and Controls
Superconducting motors operating with almost no losses could achieve power densities of 10–20kW/kg (and perhaps even higher) and torque densities of more than 35Nm/kg (compared to 10Nm/kg for the best conventional motors), the US researchers say.
Edit: maybe gas turbines hold the trophy for thrust/weight; the above challenges power/weight.

Maybe also see another thread for existing HTS propulsion research.
http://www.physicsforums.com/showpos...2&postcount=14
Cyrus
#44
Jan21-10, 07:43 PM
Cyrus's Avatar
P: 4,780
I took issue with a statement made by many of these articles: namely, that you don't need air intakes because it's electric. This is hog-wash because anyone that has flown an electric airplane knows they get very hot (battery, motor, and electronics). Cooling them is absolutely an issue. I do not buy that they don't need 'air intakes' for this vehicle. There will be significant power losses in the form of [tex]i^2R[/tex].

Also, how is this thing 'stealth' with big spinning rotors?
mheslep
#45
Jan21-10, 08:08 PM
PF Gold
P: 3,073
Quote Quote by Cyrus View Post
I took issue with a statement made by many of these articles: namely, that you don't need air intakes because it's electric. This is hog-wash because anyone that has flown an electric airplane knows they get very hot (battery, motor, and electronics).
You mean RC airplanes? That's the 'because'?

Cooling them is absolutely an issue. I absolutely do not buy that they don't need 'air intakes' for this vehicle. There will be significant power losses in the form of [tex]iR^2[/tex].
I think the point here is that the air required for combustion, on the order of liters per second per HP*, completely dwarfs any air flow required for dissipating the couple hundred watts from this one man aircraft. Given the stated battery load (45kg) for Moore's VTOL, the maximum continuous power is probably ~11kW (15HP). Though a small intake would suffice, no air intake at all is required dissipate 5% of that power as heat, just air flow over sufficient dissipative surface. I've built enclosed electronics boxes that conduct/convect away 500W from a two cubic foot box.

*quick math for gasoline combustion at 30HP requires 1 liter O2/sec, 5 liters air/sec, STP

Also, how is this thing 'stealth' with big spinning rotors?
How does one calculate the dBls / distance from these rotors?
Cyrus
#46
Jan21-10, 08:17 PM
Cyrus's Avatar
P: 4,780
How does the fact that a UAV is RC scale, or large scale, change the fact that there *will* be power losses by the engines that pose a thermal problem?

Please explain why you think this is not the case.

Also, what calculation did you do to get this 15HP number from? I don't believe this for one second.

Also, I did not say 'quiet' I said 'stealth': as in, radar cross signature.
Cyrus
#47
Jan21-10, 08:26 PM
Cyrus's Avatar
P: 4,780
Let's do a simple calculation using the momentum theory equation of an *ideal* rotor. A real rotor will inevitably require more power:

[tex] P = \frac{T^{3/2}}{\sqrt{2 \rho A}} [/tex]

Assuming:

[tex] \rho = 0.002378[/tex] slug ft^-3
[tex] A = 28.27[/tex] Assuming a generous 6' rotor diameter
[tex] T = 300lbs [/tex] (Assume 600lb GTOW)

That gives a power of about 25.7HP, very close to the claim on SIAM article of 60HP total (30HP each)!
mheslep
#48
Jan21-10, 08:48 PM
PF Gold
P: 3,073
Quote Quote by Cyrus View Post
How does the fact that a UAV is RC scale, or large scale, change the fact that there *will* be power losses by the engines that pose a thermal problem?

Please explain why you think this is not the case.
Because the efficiency of electric motors and battery packs varies considerably. Larger motors can hit 95-98% efficient, but it is difficult to do that at small scale. Also I wouldn't imagine there is much room or effort made for thermal dissipation made on an RC, at least not the couple small ones I've toyed with. Small motor/battery mounted on poor heat conductors - plastic/composite - so yeah they'll get hot.

Also, what calculation did you do to get this 15HP number from? I don't believe this for one second.
SIAM said Moore's using a 45 kg battery load. Li Ion puts out 250-340W/ kg continuous (above I said maximum and corrected that to continuous) Edit: maximum battery discharge rate is typically be 10x (250W) for very short periods, i.e. peak up to 150HP. The motor would undoubtedly be the limiting factor - SIAM suggests it is 60HP.

Also, I did not say 'quiet' I said 'stealth': as in, radar cross signature.
Wasn't the 'stealth' reference in SIAM was on thermal signature? Obviously electric will be low compared to combustion.

Yes:
Quote Quote by SIAM
n addition, since electric motors are so efficient, they also generate far less heat. This not only gives them a lower thermal signature for military stealth, but means they don't need anywhere near the same amount of cooling air flowing over them that internal combustion engines do,...
mheslep
#49
Jan21-10, 09:03 PM
PF Gold
P: 3,073
Quote Quote by Cyrus View Post
Let's do a simple calculation using the momentum theory equation of an *ideal* rotor. A real rotor will inevitably require more power:

[tex] P = \frac{T^{3/2}}{\sqrt{2 \rho A}} [/tex]

Assuming:

[tex] \rho = 0.002378[/tex] slug ft^-3
[tex] A = 28.27[/tex] Assuming a generous 6' rotor diameter
[tex] T = 300lbs [/tex] (Assume 600lb GTOW)

That gives a power of about 25.7HP, very close to the claim on SIAM article of 60HP total (30HP each)!
Thanks. How does one estimate the acoustic output of such a prop?
Cyrus
#50
Jan21-10, 09:03 PM
Cyrus's Avatar
P: 4,780
Quote Quote by mheslep View Post
Thanks. How does one estimate the acoustic output of such a prop?
Want a PhD? Hehehe, honestly, I think its all empirical. The equations look like the NS equations: no closed form solutions.
mheslep
#51
Jan21-10, 09:11 PM
PF Gold
P: 3,073
For illustration:

NEMA electric motor efficiency requirements
Power
(hp) Minimum Nominal Efficiency
1 - 4 78.8
5 - 9 84.0
10 - 19 85.5
20 - 49 88.5
50 - 99 90.2
100 - 124 91.7
> 125 92.4

I suspect the typical RC motor is 0.1 to 0.01 HP. You get the idea.
http://www.engineeringtoolbox.com/el...ncy-d_655.html
mheslep
#52
Jan21-10, 09:14 PM
PF Gold
P: 3,073
Quote Quote by Cyrus View Post
Want a PhD? Hehehe, honestly, I think its all empirical. The equations look like the NS equations: no closed form solutions.
Yes silly question but I thought some rough bounds could be put on the maximum noise. For instance, if 60HP is converted completely to audible sound (of course its not) how loud is that, assuming no resonance or amplification.
Cyrus
#53
Jan21-10, 09:16 PM
Cyrus's Avatar
P: 4,780
Quote Quote by mheslep View Post
Yes silly question but I thought some rough bounds could be put on the maximum noise. For instance, if 60HP is converted completely to audible sound (of course its not) how loud is that, assuming no resonance or amplification.
I'll ask someone I know about a relationship to noise. I think its something like the log of the disk loading.
Cyrus
#54
Jan21-10, 09:17 PM
Cyrus's Avatar
P: 4,780
Quote Quote by mheslep View Post
For illustration:

NEMA electric motor efficiency requirements
Power
(hp) Minimum Nominal Efficiency
1 - 4 78.8
5 - 9 84.0
10 - 19 85.5
20 - 49 88.5
50 - 99 90.2
100 - 124 91.7
> 125 92.4

I suspect the typical RC motor is 0.1 to 0.01 HP. You get the idea.
http://www.engineeringtoolbox.com/el...ncy-d_655.html
On takeoff, my motor would draw almost ~750W. The speed controller was rated at 100A max.


Register to reply

Related Discussions
Aviation/Jet Fuels Mechanical Engineering 17
Dan Oriti wins prestige million-Euro young researcher prize Beyond the Standard Model 8
Aviation Fuel Chemistry 2
Planning to become a commercial pilot Academic Guidance 7
Robotics AI competition, million dollar prize Computing & Technology 16