## Chebyshev's theorem

Chebyshev's theorem: If μ and σ are the mean and standard deviation of the random variable X, then for any positive constant k,the probability that X will take on a value within k standard deviations of the mean is at least [1-(1/kČ)],that is,
P(|X-μ|<kσ) ≥ 1-1/kČ, σ≠0.
(i) given the chebyshev theorem,prove this theorenn using classical definition of variance.
(ii)Give an example of how this theorem can be used to calculate probability.

 PhysOrg.com science news on PhysOrg.com >> Heat-related deaths in Manhattan projected to rise>> Dire outlook despite global warming 'pause': study>> Sea level influenced tropical climate during the last ice age

 Quote by risha Chebyshev's theorem: If μ and σ are the mean and standard deviation of the random variable X, then for any positive constant k,the probability that X will take on a value within k standard deviations of the mean is at least [1-(1/kČ)],that is, P(|X-μ|
Are you asking us to answer this question for you? If this is a homework question, it should be posted in that forum with an attempt at a solution. In any case, we want to see your attempt at an answer.