
#1
Mar712, 01:46 PM

P: 30

Hi, I try to understand why energy can not have a direction. For instance, kinetic energy of a particle could be considered to have the direction of its velocity. Potential energy of a body in a gravitational field also can be considered to have direction (at least in the twobody case). The same for a mass and a spring. Of course, there are cases where forces balance and the potential energy has no associated direction anymore (as with a central body that is being pulled by two springs in opposite directions), still the separate components of potential energy of the central body can be associated with a direction and so can the potential energies of the two bodies at the other sites of the springs. I realize there are some complications and questions, but conceptually I do not see why energy does not have direction.
Any references on this subject? Thanks! 



#2
Mar712, 02:27 PM

P: 5,634

It's just not defined that way...but as a scalar, a non directional entity.
Energy is the ability to do work. Work is defined as a force acting over a distance: W = Fd. more precisely: W = F[cos] d, a scalar, a dot product, and the work can be either positive or negative. For example when you lower an object to the floor, the work done on the object by the upward force of a hand is negative....you are opposing the 'force' of gravity....and a 'direction' or such energies may not be obvious in the general situation. For things like partical motion, or throwing a ball, giving a direction to 'energy' does have some intutitive appeal. But many forms of energy like thermal energy, radioactivity,zero point energy, chemistry, etc. don't have an easily defined direction. Some 'work' in many directions simultaneously. Also energy a scalar energy has some attributes not so readily apparent: 



#3
Mar812, 07:01 AM

Mentor
P: 16,485

If energy had a direction then it would not be conserved. Think about a circular orbit, you would have a continually changing KE with no change in PE. Or simple harmonic motion, each time it passes through equilibrium there is no PE and the KE is reversed.




#4
Mar812, 08:03 AM

P: 2,077

Why doesn't energy have direction?
In a sense, energy does have a direction. In the 4dimensional geometry of spacetime, energy is the time component of the momentum vector. Thus, the momentum 4vector of a particle is p=(E/c, px,py,pz), analogous to its position 4vector (t/c,x,y,z). So energy points in the time direction. When we do a Lorentz transformation, energy and momentum mix in the same way that space and time mix.
For ordinary situations, where the velocities involved are much less than the speed of light, the velocity in the time direction is very much greater than any of the spatial velocities. In this case, the energy can be treated essentially as a scalar. 



#5
Mar812, 08:22 AM

P: 5,634

phyzguy:
Your post seems inconsistent with Dalespams...but I am not sure I understand the consequences of his post... When posting above, I was wondering myself about the consequences of the OP question regarding conservation of energy...and implications wrsp Noether's Theorem. If anyone can comment regarding those implications I'd appreciate it. 



#6
Mar812, 10:04 AM

P: 53

Did you forget EnergyMomentum Tensor and Energy flux? in electromagnetic field description there is kind of different rates of energy flaw in different directions, and this can be thought as a kind of "energy direction", anyway this flaw should be transformed in a tricky way (i.e Lorentz transformations) that will keep the "total flux" conserved.




#7
Mar812, 10:20 AM

Mentor
P: 16,485





#8
Mar812, 12:30 PM

P: 2,077





#9
Mar912, 01:08 PM

P: 5,634

Dalespam:
The lightbulb finally lit....I've been misreading your post: You are assuming a direction and properly noting as a consequence that therefore the KE [direction] would be continually changing. DUH!!!! I am definitely getting too old for this stuff................ I shall now return to installing a new vanity countertop for my wife. THAT I can handle. 



#10
Mar912, 03:52 PM

Mentor
P: 16,485





#11
Mar912, 04:15 PM

P: 32

If you derive the definition of energy from the work done by a force its value will only be meaningful if the force is in the same direction of the displacement. Thus if you equate energy with ability to perform work it would be unecessary to specify a direction since the force will always be parallel to the dispacement it causes.




#12
Mar3113, 08:44 AM

P: 83

Hello all .
Suppose we have a source of energy ( like potential energy ) that can cause moving an object . My questions are : 1  Is this source a pure potential energy or a momentumenergy ? Because if we want to move a object we must give it momentum . or i am wrong ? we must give it energy ? 2  If energy has no direction how can get direction to object ? 



#13
Mar3113, 10:50 AM

P: 15

Doesn't a force contain energy but with force you have given a vector to that energy?




#14
Mar3113, 10:59 AM

P: 1,205

It's quite hard to understand what is meant by some of these questions.
Energy is a scalar, whether it's potential energy or kinetic. Force is a vector. One does not contain the other. 



#15
Mar3113, 02:43 PM

Mentor
P: 16,485





#16
Mar3113, 04:19 PM

P: 3,551





#17
Apr113, 06:37 AM

P: 83

So let's talk about particles . Suppose there are two single electron , one of them is in motion and another is at rest . Electron in motion possess kinetic energy and momentum and when it collide with electron at rest cause electron at rest start to motion in certain direction . Since energy doesn't have direction so this direction comes from momentum ( momentum is vector ) . am i right ? Now suppose we have an electron at rest and a source of energy ( like potential energy ) . My questions are : Potential energy can "directly" cause to motion the electron ? or it must change form to such as electromagnetism radiation and then cause to motion it ? Does the momentum for motion this electron come from potential energy ? If yes , is the source of energy really "pure energy" ? or include another quantity like momentum ? And in last , for motion which is more fundamental ? energy or momentum ? May be you'll say force but this force comes from what ? momentum or energy ? Thanks for your answer . 



#18
Apr613, 04:05 PM

P: 83




Register to reply 
Related Discussions  
Fine structure constant probably doesn't vary with direction in space!  Cosmology  124  
Potential energy and GR, something doesn't add up  Special & General Relativity  6  
Why the conservation energy doesn't work out?  Introductory Physics Homework  2 