## quotient space

Hello friends,
I would ask if anyone knows the métrqiue on the quotient space? ie, if one has a metric on a vector space, how can we calculate the metric on the quotient space of E?
 PhysOrg.com science news on PhysOrg.com >> Ants and carnivorous plants conspire for mutualistic feeding>> Forecast for Titan: Wild weather could be ahead>> Researchers stitch defects into the world's thinnest semiconductor
 Blog Entries: 8 Recognitions: Gold Member Science Advisor Staff Emeritus First, what do you mean with quotient space?? Do you mean the quotient space as defined in topology?? In that case, the quotient of a metric space is not in general metrizable. If you're working with a normed vector space V and a closed subset W, then V/W (as vector space quotient) does carry a norm which is given by $$\|x+W\|=inf \{\|x+w\|~\vert~w\in W\}$$
 yes I speak of a normed vector space, but how you got this metric? you can give me the link or document where I can find the information? and thank you very much.

Blog Entries: 8
Recognitions:
Gold Member
Staff Emeritus

## quotient space

Here's some info: http://people.math.gatech.edu/~heil/.../section6a.pdf
 The elements of the quotient space V/W are each hyperplanes which lie parallel to and have equal dimension to W. Since W is the only one passing through the origin, it is the zero of the space. For instance, ℝ2/Y, where Y is the y-axis, is essentially the x-axis. This is because each line parallel to the Y axis (each hyperplane parallel to the space we are dividing by) is totally determined its value measured along the x-axis. The formula that micromass gave computes the shortest distance from any point in the plane to any point in the "zero plane." This is the simplest, most canonical way to extend a norm on the original space to a norm on the quotient space.

Recognitions:
Gold Member
 Quote by micromass If you're working with a normed vector space V and a closed subset W, then V/W (as vector space quotient) does carry a norm which is given by $$\|x+W\|=inf \{\|x+w\|~\vert~w\in W\}$$
By "closed subset W" you mean linear subspace?
 Blog Entries: 8 Recognitions: Gold Member Science Advisor Staff Emeritus I mean a linear subspace that is closed (for the norm), that is: if a sequence in W converges then its limit point is contained in W. We need the subspace to be closed in order for the quotient-norm to define a norm and not a semi-norm. And yes, I made a mistake in my post, I needed W to be both closed and a subspace. Just being closed is obviously not enough.

Recognitions:
Gold Member
 Quote by micromass I mean a linear subspace that is closed (for the norm), that is: if a sequence in W converges then its limit point is contained in W. We need the subspace to be closed in order for the quotient-norm to define a norm and not a semi-norm. And yes, I made a mistake in my post, I needed W to be both closed and a subspace. Just being closed is obviously not enough.
I see. I guess this is necessary only for infinite dimensional case, correct?

Blog Entries: 8
Recognitions:
Gold Member