Register to reply

Convection diffusion equation 1D exact solution

Share this thread:
Nov10-12, 11:59 PM
P: 2
I'm looking for the analytical solution for the 1D convection diffusion equation with a constant heat flux.

Boundary conditions:
The domain I'm looking at is x from 0 meters to 1 meter. The temperature at x=0 is T=0 degrees Celsius. At x=1, T=100 C.

I'm given the equation:

d/dx(rho*Cp*u*T)=d/dx(k dT/dx) + q'''

Cp=specific heat
u=velocity in x-dir
k=thermal conductivity
q=generated heat (constant)
P=(rho*u*L)/k (Peclet number)
To=0 C=273 K
T_L=100 C=373 K

I get it in the form:

u/alpha (dT/dx) - d^2T/dx^2 = q'''/k (equation 2)

I need to solve for T as a function of x (space).

I found the no generation solution to be


I tried plugging my equation 2 into a DE solver and I got

T(x)=[a*c1*e^(bx/a)]/(b) + cx/b + c2

c1 and c2 are constants

I tried plugging in my boundary conditions to solve for c1 and c2 multiple times, but the solutions are not coming close to my numerical solutions at all.

I have also searched numerous sites trying to find this solution.

If anyone knows what T(x) is for this type of problem with constant heat flux, please respond to this post. Thank you.
Phys.Org News Partner Science news on
Study links polar vortex chills to melting sea ice
Lab unveil new nano-sized synthetic scaffolding technique
Cool calculations for cold atoms: New theory of universal three-body encounters
Nov12-12, 11:26 AM
P: 350
To me it looks like the DE solver solution is incorrect. Just delete the a=-1 to get the right answer which should be:

Aexp(Px/L) + B + (c/b)x

The boundary conditions give
Aexp(P)+B+c/b =TL.
Subtracting the two equations gives
A = (TL-T0-c/b) / (exp(P)-1).
B = T0 - A.

T = (TL-T0-c/b)*(exp(Px/L) -1) / (exp(P)-1) + T0 +(c/b)x

Register to reply

Related Discussions
Show the Exact Differential Equation solution is also a solution to another equation Calculus & Beyond Homework 3
Solution of exact differential equation Calculus 1
Solving Diffusion equation with Convection Differential Equations 3
Convection diffusion equation Differential Equations 0
Solution to the exact differential equation Differential Equations 3