Register to reply

Set of vectors with each subset forming a basis

by Constantinos
Tags: basis, forming, subset, vectors
Share this thread:
Constantinos
#1
Nov24-12, 02:29 PM
P: 78
Hey!

Let M and N be two natural numbers and N>M. I want to build a set A with N vectors of size M such that each subset S of A, where |S| = M, contains linearly independent vectors.

Another way to put it is that every S should be a basis for R^M.

Any ideas? Thanks!
Phys.Org News Partner Science news on Phys.org
Wildfires and other burns play bigger role in climate change, professor finds
SR Labs research to expose BadUSB next week in Vegas
New study advances 'DNA revolution,' tells butterflies' evolutionary history
Vargo
#2
Nov26-12, 01:00 PM
P: 350
Do you want an explicit construction or a proof that such a set exists?
HallsofIvy
#3
Nov27-12, 08:37 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,363
For example, if M= 2, you can take i= <1, 0>, j= <0, 1>, and k= i+ j= <1, 1>. Then any subset of order 2, {i, j}, {i, k}, and {j, k}, is a basis.

For M= 3, start with i= <1, 0, 0>, j=<0, 1, 0>, and k= <0, 0, 1> and add l= i+ j+ k.

Can you continue that?


Register to reply

Related Discussions
Pauli matrices forming a basis for 2x2 operators Quantum Physics 2
Subset? Basis? Calculus & Beyond Homework 1
Forming a basis Linear & Abstract Algebra 3
Forming basis of R^3 General Math 2