Register to reply

Help With Partial Derivatives and Infinite Sums

Share this thread:
Tenenbaum3r
#1
Dec14-12, 02:16 PM
P: 2
I'm working on a calculus project and I can't seem to work through this next part...
I need to substitute equation (2) into equation (1):

(1): r[itex]\frac{\partial}{\partial r}[/itex](r[itex]\frac{\partial T}{\partial r}[/itex])+[itex]\frac{\partial ^{2}T}{\partial\Theta^{2}}[/itex]=0

(2): [itex]\frac{T-T_{0}}{T_{0}}[/itex]=A[itex]_{0}[/itex]+[itex]\sum[/itex] from n=1 to infinity of ([itex]\frac{r}{R}[/itex])[itex]^{n}[/itex](A[itex]_{n}[/itex]cos(n[itex]\Theta[/itex])+B[itex]_{n}[/itex]sin(n[itex]\Theta[/itex]))

I know I have to solve for T in the second equation and then substitute but I don't really know the rules for infinite sums... The whole point of this is to prove that equation (2) is a solution to equation (1). Any help or advice would be appreciated!
Phys.Org News Partner Science news on Phys.org
Climate change increases risk of crop slowdown in next 20 years
Researcher part of team studying ways to better predict intensity of hurricanes
New molecule puts scientists a step closer to understanding hydrogen storage
mfb
#2
Dec14-12, 05:50 PM
Mentor
P: 11,580
You can multiply an infinite sum with T0, this is no problem. You don't need to modify the sum itself to solve equation (2) for T.
Tenenbaum3r
#3
Dec14-12, 10:22 PM
P: 2
Thank you! that helped me figure it out


Register to reply

Related Discussions
Partial Sums resembling sums of secant hyperbolic Calculus & Beyond Homework 0
Partial Sums Calculus & Beyond Homework 3
Convergence of partial sums Calculus & Beyond Homework 6
Sequences, Cumulative Sums, Partial Sums Plot - Ti-89 Titanium Calculators 0
Estimating partial derivatives/directional derivatives Calculus & Beyond Homework 1