Negative Kelvin temperature? (Recent Science paper)


by xnwkac
Tags: kelvin, negative, paper, science, temperature
xnwkac
xnwkac is offline
#1
Jan3-13, 05:48 PM
P: 2
Chemistry student saying hi to everyone

Just read http://www.nature.com/news/quantum-g...e-zero-1.12146 about negative temperature. I knew I wouldn't understand a single sentence of the actual Science paper, but I took a look at the Science perspective (Lincoln D. Carr) but I didn't understand it either.

So I understand nothing about physics. But as far as I know, K=0 is defined as when all energy levels (vibrational movements etc) are in their respective ground state? So as little movements as possible. Then I don't really understand how you can get negative temperature.

If I understand the Perspective (http://www.sciencemag.org/content/339/6115/42.summary if you have access) correctly, at temperatures above 0, particles have a distribution where only a few are in a high-energy state. I get that.
But what's crazy is that to achieve negative temperatures, they mess with the particles so that MOST are in a high-energy state.
But then I really don't follow what happens next. K=0 is already as little movement as possible (as there is no excited state), so how could you get below that?

How would you explain this phenomena to someone with no physic knowledge?

Thanks!!!
Phys.Org News Partner Physics news on Phys.org
Sensitive detection method may help impede illicit nuclear trafficking
CERN: World-record current in a superconductor
Beam on target: CEBAF accelerator achieves 12 GeV commissioning milestone
Bill_K
Bill_K is offline
#2
Jan3-13, 06:36 PM
Sci Advisor
Thanks
Bill_K's Avatar
P: 3,846
Well if you have a collection of atoms or molecules which each have two energy levels Eexc and Egnd, where Eexc > Egnd, and the number of atoms in these states are Nexc and Ngnd respectively, then assuming everything is in thermal equilibrium, the Maxwell distribution says the ratio Nexc/Ngnd = exp-(Eexc - Egnd)/kT.

Normally Nexc < Ngnd and of course T is positive. But what if the excited state is overpopulated? That is, Nexc > Ngnd. Then for the same formula to work, and give a ratio greater than one, T must be negative.
mfb
mfb is offline
#3
Jan4-13, 08:45 AM
Mentor
P: 10,766
In thermodynamics, temperature is defined via the relation between entropy and energy:
$$\frac{1}{T}=\frac{dS}{dE}$$

Usually, entropy increases with energy, and temperature is positive. With population inversion (see Bill_K), this can change, and an increased energy corresponds to a lower entropy - which gives a negative temperature.

A negative temperature is not cold - it is hotter than everything with positive temperature.

SImonMWatts
SImonMWatts is offline
#4
Jan4-13, 09:50 AM
P: 1

Negative Kelvin temperature? (Recent Science paper)


Thanks mfb - I read about this in New Scientist and was confused, but now I see
f95toli
f95toli is offline
#5
Jan4-13, 11:07 AM
Sci Advisor
PF Gold
f95toli's Avatar
P: 2,194
Note that this is not entirely a new concept since population inversion is such a common phenomenon.
E.g. the noise temperature of a maser based amplifier can -at least in theory- be negative for exactly same reason.
D H
D H is offline
#6
Jan4-13, 06:20 PM
Mentor
P: 14,428
This is getting an undue amount of hype, partly thanks to misleading headlines such as "Atoms Reach Record Temperature, Colder than Absolute Zero." This is just wrong. Negative temperatures are hotter than hot rather than colder than cold.

The concept of negative temperatures arises from the thermodynamic definition of temperature, [itex]\frac 1 T = \frac{\partial S}{\partial E}[/itex] (see previous posts). It is possible to construct systems where adding energy decreases entropy, making 1/T (and hence T) negative.

This newest result has received a huge amount of hype. It's not new. It's older than me.

E. M. Purcell and R. V. Pound, A Nuclear Spin System at Negative Temperature, Phys. Rev. 81, 279 - 280 (1951)
Max™
Max™ is offline
#7
Jan5-13, 07:31 AM
P: 241
Baez is always a good route to check up on things to get a better idea of what is going on, I've found: http://math.ucr.edu/home/baez/physic...mperature.html

Now, besides the hype, I don't recall hearing of a large ensemble of atoms being placed in a negative temperature state before, it seems like it IS interesting... but not "WORLD SHATTERING" interesting... more like "so did ya hear about..." type stuff.
Hurkyl
Hurkyl is offline
#8
Jan5-13, 03:04 PM
Emeritus
Sci Advisor
PF Gold
Hurkyl's Avatar
P: 16,101
The usual extended number line looks like this:

[tex](-\infty) --- (-1) --- (0) --- (1) --- (+\infty)[/tex]

(where I've rescaled the line so that I can draw it in finite space)

However, for the temperature extended number line, it's organized like this instead:

[tex](0^+) --- (1) --- (\infty) --- (-1) --- (0^-)[/tex]

where I've affixed a decoration to indicate the two endpoints are different.
xnwkac
xnwkac is offline
#9
Jan5-13, 03:57 PM
P: 2
Quote Quote by mfb View Post
In thermodynamics, temperature is defined via the relation between entropy and energy:
$$\frac{1}{T}=\frac{dS}{dE}$$

Usually, entropy increases with energy, and temperature is positive. With population inversion (see Bill_K), this can change, and an increased energy corresponds to a lower entropy - which gives a negative temperature.

A negative temperature is not cold - it is hotter than everything with positive temperature.
Great reply! Most people think temperature as movement, but they just exploited a thermodynamic definition

Quote Quote by Hurkyl View Post
The usual extended number line looks like this:

[tex](-\infty) --- (-1) --- (0) --- (1) --- (+\infty)[/tex]

(where I've rescaled the line so that I can draw it in finite space)

However, for the temperature extended number line, it's organized like this instead:

[tex](0^+) --- (1) --- (\infty) --- (-1) --- (0^-)[/tex]

where I've affixed a decoration to indicate the two endpoints are different.
Could you please clarify the lower number line? I have problems understanding it Are you talking about how hot it is in the temperature number line?
Hurkyl
Hurkyl is offline
#10
Jan5-13, 04:34 PM
Emeritus
Sci Advisor
PF Gold
Hurkyl's Avatar
P: 16,101
Quote Quote by xnwkac View Post
Could you please clarify the lower number line? I have problems understanding it Are you talking about how hot it is in the temperature number line?
Both number lines are ordered from smallest to largest. So 1 is a colder temperature than -1.

*: In the extended sense. I don't think
Jorriss
Jorriss is offline
#11
Jan6-13, 08:34 PM
P: 1,025
It's easier to understand if one looks at the more fundamental beta. Heat flows from lower to higher beta and that handles negative temperatures fine.
billiards
billiards is offline
#12
Jan7-13, 05:32 AM
P: 745
Quote Quote by Hurkyl View Post
The usual extended number line looks like this:

[tex](-\infty) --- (-1) --- (0) --- (1) --- (+\infty)[/tex]

(where I've rescaled the line so that I can draw it in finite space)

However, for the temperature extended number line, it's organized like this instead:

[tex](0^+) --- (1) --- (\infty) --- (-1) --- (0^-)[/tex]

where I've affixed a decoration to indicate the two endpoints are different.
So T=-1 is hotter than T=infinity????
D H
D H is offline
#13
Jan7-13, 07:31 AM
Mentor
P: 14,428
Yes. That's essentially what I said in post #6 that "negative temperatures are hotter than hot."

Heat flows from an object with a finite negative temperature to an object with a finite positive temperature.
mfb
mfb is offline
#14
Jan7-13, 07:58 AM
Mentor
P: 10,766
@D H:
I think you mixed positive and negative, otherwise I don't understand your post.

##\beta=\frac{1}{T}##-scale:
(+∞) ... (1) .... (0) ... (-1) ... (-∞)
Absolute zero . . . . . . . . . . hottest possible object
D H
D H is offline
#15
Jan7-13, 08:49 AM
Mentor
P: 14,428
Quote Quote by mfb View Post
@D H:
I think you mixed positive and negative, otherwise I don't understand your post.
You're right. I don't know what made me type that exactly backwards, but I obviously did just that. Thanks. I fixed my previous post.
dipstik
dipstik is offline
#16
Jan8-13, 04:32 PM
P: 96
what was the bit about defying gravity and an analouge for the cosmological constant?

just more hype or soemthing future researchers in other fields might begin probing?
Khashishi
Khashishi is offline
#17
Jan8-13, 04:50 PM
P: 832
For people not versed in statistical mechanics, the statistical mechanics definition of temperature may seem kind of weird. But really, all it is saying is that temperature is basically defined by which way energy (heat) will spontaneously flow if you put two items in contact. It doesn't say anything about the total energy in the items.

For positive temperatures, energy (heat) will spontaneously flow from a higher temperature to a lower temperature. This is also true for negative temperatures. But if you put a negative temperature item in contact with a positive temperature item, then heat will flow from the former to the latter. Ergo, all negative temperatures are hotter than all positive temperatures.

Absolute zero is still the coldest of temperatures. With negative temperatures, there is also an Absolute hot, which is the limit of temperature 0 approaching from the negative side. But since it is just a mathematical limit, it isn't something that can be achieved, just like absolute zero.
I like Serena
I like Serena is offline
#18
Jan8-13, 06:16 PM
HW Helper
I like Serena's Avatar
P: 6,189
Okay, so I get that the scale runs a bit weird due to the choice of definition for thermodynamic temperature.

But I'm still missing something here.
We already know that physics starts behaving weird when temperature and entropy both approach zero.
So what happens if they approach zero "from the other side".
Are there any weird or otherwise unexplained phenomena there?
Should we expect any?


Register to reply

Related Discussions
The temperature change of an ideal gas, Joule Kelvin expansion (const. enthalpy) Advanced Physics Homework 1
Recent Journal/Paper of Antarctic/Artic Sea Ice Monitoring Earth 5
Kelvin Temperature - Celsius Temperature Change General Physics 12
Less than 0 kelvin? Meaning of temperature Classical Physics 23
Cooperstock &Tieu's most recent paper Special & General Relativity 4