Escaping Our Solar System


by Bashyboy
Tags: escaping, solar
Bashyboy
Bashyboy is offline
#1
Jan29-13, 07:29 AM
P: 878
1. The problem statement, all variables and given/known data
(a) What is the minimum speed, relative to the Sun, necessary for a spacecraft to escape the solar system if it starts at the Earth's orbit?

(a) What is the minimum speed, relative to the Sun, necessary for a spacecraft to escape the solar system if it starts at the Earth's orbit?


2. Relevant equations



3. The attempt at a solution

I am not exactly sure how to solve this problem. Should I use an energy approach? Do I need to calculate the escape speed for each planet, because it will pass by each one, and then sum all of the velocities together?
Phys.Org News Partner Science news on Phys.org
SensaBubble: It's a bubble, but not as we know it (w/ video)
The hemihelix: Scientists discover a new shape using rubber bands (w/ video)
Microbes provide insights into evolution of human language
voko
voko is offline
#2
Jan29-13, 07:40 AM
Thanks
P: 5,533
What does "escape" really mean?

Regarding your solution, consider, for example, a trajectory perpendicular to the plane of the ecliptic. Would it pass by each planet? Secondly, consider that your speed is that sufficient to escape Jupiter; would passing by Neptune need any more speed?
phinds
phinds is offline
#3
Jan29-13, 07:52 AM
PF Gold
phinds's Avatar
P: 5,718
The answer is posted online. I remember looking it up. Do you know how to use Google search?

Bashyboy
Bashyboy is offline
#4
Jan29-13, 07:56 AM
P: 878

Escaping Our Solar System


Quote Quote by phinds View Post
The answer is posted online. I remember looking it up. Do you know how to use Google search?
I am quite capable to use Google's search engine; however, I'd like to figure out the answer without copying and pasting.
Bashyboy
Bashyboy is offline
#5
Jan29-13, 08:06 AM
P: 878
Quote Quote by voko View Post
Regarding your solution, consider, for example, a trajectory perpendicular to the plane of the ecliptic. Would it pass by each planet?
I posted a picture of the two different trajectories. The line in red is the one I believe you are talking about. The line in blue is the one I was thinking about. Does the red line describe the trajectory you were speaking about?

Would it pass by each planet? Secondly, consider that your speed is that sufficient to escape Jupiter; would passing by Neptune need any more speed?
Well, it would seem like it would. Wouldn't the gravity of Jupiter pull on the projectile as it passed but it, thus reducing its speed? It then being possible that the speed is reduced by Jupiter's gravitational pull, the reduced speed of the projectile might then be not enough to escape Neptune's gravitational pull, to a place where Neptune's gravitational pull is negligible.

EDIT: Forgot to post picture.
Attached Thumbnails
planetorder.JPG  
voko
voko is offline
#6
Jan29-13, 08:22 AM
Thanks
P: 5,533
Yes, the red line would be one perpendicular to the plane of the ecliptic.

You have not said what you think "escape" means. Let's get this clear before we talk about anything else.
Bashyboy
Bashyboy is offline
#7
Jan29-13, 08:28 AM
P: 878
From my understanding, escape speed is the speed necessary to reach a point away from the planet where the gravitational pull is so small it is assumed to be zero, implying that gravitational potential energy is also zero. It is at an "infinite" distance. Does that seem correct?

Oh, so the red line is correct. So, that's why we only have to consider the escape speed of the sun and earth, because it doesn't have to pass by the other planets; and because the projectile is at an "infinite" distance from earth's adjacent planets, that their gravitational pulls are negligible?
voko
voko is offline
#8
Jan29-13, 08:43 AM
Thanks
P: 5,533
Quote Quote by Bashyboy View Post
From my understanding, escape speed is the speed necessary to reach a point away from the planet where the gravitational pull is so small it is assumed to be zero, implying that gravitational potential energy is also zero. It is at an "infinite" distance. Does that seem correct?
I think you are slightly confused. Zero potential energy does not follow from zero force of gravity. Recall that the "zero" level of any potential energy is completely arbitrary. It just happens that the "zero" level of potential energy is usually set at the infinity, and the energy is negative elsewhere. What's the formula for it?

Anyway, "escape" means "get infinitely away" and "reach zero potential energy". What about the projectile's speed and the kinetic energy "at the infinity"?

Oh, so the red line is correct. So, that's why we only have to consider the escape speed of the sun and earth, because it doesn't have to pass by the other planets; and because the projectile is at an "infinite" distance from earth's adjacent planets, that their gravitational pulls are negligible?
Being infinitely away does not free us from having to deal with the planet's gravity. In the end, we still have to deal with the Sun's gravity in the same situation.
Bashyboy
Bashyboy is offline
#9
Jan29-13, 08:47 AM
P: 878
Yes, but what happens to Newton's Law of Gravitation as you go "infinitely" far? It goes to zero. In fact, it goes to zero more quickly than the Gravitational Potential Energy Function.
voko
voko is offline
#10
Jan29-13, 08:54 AM
Thanks
P: 5,533
Quote Quote by Bashyboy View Post
Yes, but what happens to Newton's Law of Gravitation as you go "infinitely" far? It goes to zero. In fact, it goes to zero more quickly than the Gravitational Potential Energy Function.
This is all correct; but how does this help you?
Bashyboy
Bashyboy is offline
#11
Jan29-13, 08:57 AM
P: 878
It allows me to make the reasonable assumption that, because all of the other planets are far enough away, we don't have to consider all of them. Although the sun is far away, its mass is still large enough for it to affect the projectiles escape speed.
voko
voko is offline
#12
Jan29-13, 09:11 AM
Thanks
P: 5,533
I do not see any physical basis for this assumption. "Far enough away" and "mass large enough" sound very much like wishful thinking.

Forget about the entire solar system for a minute. How does one determine the escape speed for just one gravitating body?
Bashyboy
Bashyboy is offline
#13
Jan29-13, 09:20 AM
P: 878
Then how else would you explain the solution. By the way, I found it on the internet. To find the escape speed in this particular case, you sum the escape speed of the sun and earth. We factor in the gravitational pull of the sun, even though we are launching from, yet we don't factor in the gravitational pull Venus or Mars. Why, because they are far enough away and have small enough mass, that there gravitational pull doesn't affect the escape speed. I am sure you could show mathematically, giving us a basis for our assumption, that the magnitude of Venus and Mars when compared to the Sun and earth would be insignificant in comparison. That's the only way I can see how to explain the solution.
voko
voko is offline
#14
Jan29-13, 09:24 AM
Thanks
P: 5,533
Again, I recommend that you start with just one body (a planet or the Sun). Understand how the mathematical formula for the escape speed is obtained in this simplest case. Then think how you could treat the entire solar system.
Bashyboy
Bashyboy is offline
#15
Jan29-13, 10:41 AM
P: 878
Now that I re-look at this solution for part (a), it doesn't seem correct. http://answers.yahoo.com/question/in...3234313AAPfdJt What do you think you? Why is it wrong?
voko
voko is offline
#16
Jan29-13, 10:48 AM
Thanks
P: 5,533
I would like you to work out the solution for the simple problem (projectile escaping one body) first. Then we can discuss the more complex problem.
Bashyboy
Bashyboy is offline
#17
Jan29-13, 10:55 AM
P: 878
Well, you'd use the formula [itex]v_e = \sqrt{\frac{2GM}{r}}[/itex], where M is the mass of the object the projectile is trying to escape, and r is the radius of that object.
voko
voko is offline
#18
Jan29-13, 11:08 AM
Thanks
P: 5,533
That is not correct. r is not the radius, it is something else. Do you understand how this formula is obtained?


Register to reply

Related Discussions
Anyone heard of the "solar snake" Solar system theory? Cosmology 6
Escaping the solar system from Earth's orbit Introductory Physics Homework 8
Escaping from the solar system Astrophysics 5
How would the solar system capture an extra solar planet ?? General Astronomy 14
End of our Solar system...? General Astronomy 12