What is the median number between zero and one?


by Emissive
Tags: median, number
Emissive
Emissive is offline
#1
Feb5-13, 05:35 AM
P: 20
Hi,

is there a median number between zero and one?

There are countless numbers between zero and one - an infinite set. If we pick any number at random (say 0.2) then could we always say it is the median as there is an infinite set of numbers on either side?

What if I pick another number (say 0.4) - which is different to the first - it means the assumption above is incorrect?
Phys.Org News Partner Mathematics news on Phys.org
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
Pseudo-mathematics and financial charlatanism
jbriggs444
jbriggs444 is offline
#2
Feb5-13, 07:08 AM
P: 744
Quote Quote by Emissive View Post
Hi,
There are countless numbers between zero and one - an infinite set. If we pick any number at random (say 0.2) then could we always say it is the median as there is an infinite set of numbers on either side?
We could say so. But, as you have realized, that would render the notion of median meaningless in this case.

One could make a sneaky argument that the conventional interpretation of median is the arithmetic mean of the upper and lower bound on the set of values that divide the set in half. If all values in the range [0,1] divide the set [0,1] in half then it follows that the "median" is the mean of 0 and 1, i.e. 0.5. But this does not lead to a very robust notion of "median", so let's discard that argument.

What you really need for a meaningful notion of median in the case of uncountable sets is a way to compare "how many" set elements have values greater than the median with "how many" set elements have values less than the median. Using cardinality to compare "how many" isn't very good for this. So you need a different "measure".

An obvious measure to use for this particular application would be interval length or, equivalently, Lebesgue measure. So the median value is the one that divides the interval [0,1] into two sub-intervals of equal length.


Register to reply

Related Discussions
Mean, median or mode Precalculus Mathematics Homework 2
Median of f(x) - quadratic Calculus & Beyond Homework 3
mean and median Calculus & Beyond Homework 1
generalization of mean, median Set Theory, Logic, Probability, Statistics 9
Median by interpolation Set Theory, Logic, Probability, Statistics 1