Register to reply

Please help check work

by bard
Tags: check, work
Share this thread:
bard
#1
Sep20-05, 06:20 PM
P: 65
Can someone please check my work, thank you

Discuss any discontinuities. classify each discontinuity as removable or nonremovable. (this is a peicewise function)

f(x)={sin(x), x<-3(pi)/2
{tan(x/2), -3(pi)/2<x(less than or equal to)0
{(-3x+1)/(x-2), 1<x<3
{-sqrt(x+6), x(greater than or equal to)3
{x^3+x, 0<x(less than or equal to)1


Note: all these functions are part of f(x), thus they are peicewise functions
All the possible discontinuity points are -3(pi)/2, -pi, 0, 1, 2,3
(1) Since at x=-3(pi)/2, f(x-)=sin(-3(pi)/2)=1, whilef(x+)= tan(-3(pi)/4)=1, which are equal, therefore f(x) is continuous at -3(pi)/2.

(2) At x=-pi, f(x-) sin(x)= +infinity, while f(x+)tan(x/2)=- infinity, not equal, therefore f(x) is discontinuous, which is nonremovable.

(3) At x=0, f(x+)=x^3+x = 0, while f(x-)= tan(x/2)=0, so f(x) is continuous.

(4) At x=1, f(x+)=(-3x+1)/(x-2)=1, f(x-)=x^3+x=2, so they are not equal, therefore f(x) is discontinuous, nonremovable

(5) At x=3, f(x+)=-sqrt(x+6)=-3, f(x-)=(-3x+1)/(x-2)=-8, not equal, so f(x) is discontinuous, nonremovable.

(6) at x=2 is not in the domain of the function, thereore there is a discontinuity, removable

therefore the discontinuities are at x=-pi, x=1, x=3, and x=2


am i missing any, thanks!
Phys.Org News Partner Science news on Phys.org
Fungus deadly to AIDS patients found to grow on trees
Canola genome sequence reveals evolutionary 'love triangle'
Scientists uncover clues to role of magnetism in iron-based superconductors
HallsofIvy
#2
Sep21-05, 07:36 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,497
Quote Quote by bard
Can someone please check my work, thank you

Discuss any discontinuities. classify each discontinuity as removable or nonremovable. (this is a peicewise function)

f(x)={sin(x), x<-3(pi)/2
{tan(x/2), -3(pi)/2<x(less than or equal to)0
{(-3x+1)/(x-2), 1<x<3
{-sqrt(x+6), x(greater than or equal to)3
{x^3+x, 0<x(less than or equal to)1


Note: all these functions are part of f(x), thus they are peicewise functions
All the possible discontinuity points are -3(pi)/2, -pi, 0, 1, 2,3
(1) Since at x=-3(pi)/2, f(x-)=sin(-3(pi)/2)=1, whilef(x+)= tan(-3(pi)/4)=1, which are equal, therefore f(x) is continuous at -3(pi)/2.
On the contrary, f is not even defined at -3(pi)/2! It is not enough that the limit exist there!

(2) At x=-pi, f(x-) sin(x)= +infinity, while f(x+)tan(x/2)=- infinity, not equal, therefore f(x) is discontinuous, which is nonremovable.
What? sin(pi)= 0 not infinity! In any case, f(x)= sin(x) only for x<-3pi/2, not anywhere near -pi so that's irrelevant. You are correct that tan(pi/2) is not defined so there is a removable discontinuity there.

(3) At x=0, f(x+)=x^3+x = 0, while f(x-)= tan(x/2)=0, so f(x) is continuous.
I'm sorry, where did you get f(x)= x^3+ 3? Did you intend to define f(x)= x^3+ 3 for 0< x<= 1? You missed writing that. If that was what you intended, then, yes, f is continuous at x= 0.

(4) At x=1, f(x+)=(-3x+1)/(x-2)=1, f(x-)=x^3+x=2, so they are not equal, therefore f(x) is discontinuous, nonremovable
??? (-3(1)+1)/(1-2)= (-2)/(-1)= 2! Now, was f(1) defined to be 1^2+ 1= 2? If so then f is continuous at x= 1. If not then there is a removable discontinuity.

(5) At x=3, f(x+)=-sqrt(x+6)=-3, f(x-)=(-3x+1)/(x-2)=-8, not equal, so f(x) is discontinuous, nonremovable.

(6) at x=2 is not in the domain of the function, therefore there is a discontinuity, removable
??? Your definition only goes up to "0<x(less than or equal to)1".


Register to reply

Related Discussions
Work input/output, efficient probelm, just need someone to check my work Introductory Physics Homework 1
Please check work Introductory Physics Homework 1
Can someone check my work? Calculus & Beyond Homework 4
Can Someone check my work? Calculus & Beyond Homework 8
Work question: please check my work Introductory Physics Homework 1