
#1
Sep2805, 12:43 PM

P: 35

Hi all.
I'm doing some self studying on limits, and...I have the following problem with this problem... Prove: If [tex]f(x)>0[/tex] for all [tex]x[/tex], then [tex]\lim_{x\rightarrow x_o} f(x)\geq 0[/tex] for any [tex]x_o[/tex] I'm assuming the best way to prove this is through contradiction: Assume [tex]\lim_{x\rightarrow x_o} f(x) = A < 0[/tex] This as far I get before vapor lock sets in. I guess I need to find an appropriate [tex]\epsilon[/tex] and then try to show/not show that [tex]f(x) < 0[/tex] for at least one [tex]x[/tex]. Can someone please point me on the right direction? Thanks, dogma 



#2
Sep2805, 01:59 PM

P: 83

[tex]\lim_{x\rightarrow x_o} f(x) =  A[/tex] means: for all [tex]\epsilon > 0[/tex] there exist a [tex]\delta > 0[/tex] such that [tex]f( \left]x_0  \delta, x_0 + \delta \right[) \subset \left]A\epsilon, A+\epsilon \right[ [/tex]. So in particular what do we get for [tex]\epsilon = A[/tex]?



Register to reply 
Related Discussions  
Proof of a Limit Law  Calculus  17  
limit proof  Calculus & Beyond Homework  14  
Proof of Limit  Calculus  7  
Limit proof  Calculus  19  
Proof of limit  Introductory Physics Homework  7 