Register to reply

Why doesent water fall down from a bucket while rotating it upside down?

by chound
Tags: bucket, doesent, fall, rotating, upside, water
Share this thread:
chound
#1
Dec13-05, 11:33 PM
P: 239
Why doesn't water fall down from a bucket while rotating it upside down?
Also:
1)What causes sound when bombs explode? Is it the quick heating of air and compression something like sonic boom
2)How do the ariel fireworks go up and explode?
Phys.Org News Partner Physics news on Phys.org
Physical constant is constant even in strong gravitational fields
Physicists provide new insights into the world of quantum materials
Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays
rbj
#2
Dec13-05, 11:49 PM
P: 2,251
Quote Quote by chound
Why doesn't water fall down from a bucket while rotating it upside down?
Also:
1)What causes sound when bombs explode? Is it the quick heating of air and compression something like sonic boom
2)How do the ariel fireworks go up and explode?
don't wanna deal with 1 and 2, but the answer to question 0 is that the premise of the question is wrong. water does fall from the bucket if the rotation is slow enough.

if the rotation is so fast that the bucket is accelerating downward faster than the acceleration of gravity, then the bucket is forcing the water to fall faster than gravity and since the sides and "bottom" of the bucket are pushing the water to accelerate faster than gravity is pulling (out of the open "top" of the bucket), the water does not escape the containment of the bucket.
chound
#3
Dec14-05, 01:02 AM
P: 239
rbj Can it be expressed mathematically as Weight = mass(gravity-acceleration of bucket),
since a >g it experiences negative weight?

Danger
#4
Dec14-05, 09:18 AM
PF Gold
Danger's Avatar
P: 8,964
Why doesent water fall down from a bucket while rotating it upside down?

I'll take #3. Commercial fireworks are launched by computer control (although some artists still sequence them manually) from a series of mortars. The launching charge determines how high they go, and an internal fuse that is lit during launch determines at what time they explode. Any secondary explosions are fuse-timed from the bursting charge. It's actually a very intricate system.
Astronuc
#5
Dec14-05, 11:44 AM
Admin
Astronuc's Avatar
P: 21,915
As for 1. this is an effect of centrifugal force - http://hyperphysics.phy-astr.gsu.edu...corf.html#cent

In general - http://hyperphysics.phy-astr.gsu.edu/hbase/circ.html

It is important to understand the difference between centrifugal and centripetal forces.

#2 - Sonic booms arise from the compression of air on the leading points of an aircraft which reaches, then slightly exceeds the speed of sound in the air.

This might help - http://en.wikipedia.org/wiki/Sonic_boom


#3 - Aerial fireworks are launched from a mortar (usually steel metal tube). There is a launching charge, which propels the pyrotechnic charge into the air, and the burst charge inside the package.
http://people.howstuffworks.com/fireworks2.htm
Dmstifik8ion
#6
Dec14-05, 05:47 PM
P: 196
Momentum (motion) applied to the bucket is imparted (delivered) to its contents, the water inside. Once the water is in motion it has a tendency to continue its motion at the same speed and direction (velocity), in a strait line. Once sufficient motion is reached this tendency (inertia) overcomes the pull of gravity and the water remains inside.
Doc Al
#7
Dec14-05, 06:54 PM
Mentor
Doc Al's Avatar
P: 41,579
Another way of saying what rbj already explained: Since the bucket of water is being whirled in a circle, its acceleration is centripetal. At the apex of its motion that centripetal acceleration is downward. If the bucket is moving too slowly, the centripetal acceleration will be less than g and the water will begin to fall from the bucket; but if the speed is sufficient to make the centripetal acceleration greater than g, the water will be pressed into the bucket and will not spill.


Register to reply

Related Discussions
Cork in a water bucket, knowing our day-to-day world Classical Physics 8
How far does the bucket fall? Introductory Physics Homework 1
Water in upside down cup Classical Physics 9
Falling bucket of water Classical Physics 18
Pressure of a Rotating Bucket of Liquid Introductory Physics Homework 18