What is the Incompleteness Theorem and how does it relate to Gödel's proof?

  • Thread starter Thread starter heman
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Gödel's Incompleteness Theorem demonstrates that within any sufficiently complex formal system, there are true statements that cannot be proven within that system. Gödel introduces a Universal Truth Machine (UTM) and constructs a self-referential statement, G, which asserts that the UTM will never declare G to be true. If the UTM claims G is true, it creates a contradiction, proving that the UTM cannot be truly universal. The discussion highlights the paradoxical nature of Gödel's proof, likening it to a liar's paradox, emphasizing that some truths are inherently unprovable. Ultimately, Gödel concludes that there are truths beyond the reach of any universal system.
heman
Messages
353
Reaction score
0
The proof of Gödel's Incompleteness Theorem is so simple, and so sneaky, that it is almost embarassing to relate. His basic procedure is as follows:

1. Someone introduces Gödel to a UTM, a machine that is supposed to be a Universal Truth Machine, capable of correctly answering any question at all.
2. Gödel asks for the program and the circuit design of the UTM. The program may be complicated, but it can only be finitely long. Call the program P(UTM) for Program of the Universal Truth Machine.
3. Smiling a little, Gödel writes out the following sentence: "The machine constructed on the basis of the program P(UTM) will never say that this sentence is true." Call this sentence G for Gödel. Note that G is equivalent to: "UTM will never say G is true."
4. Now Gödel laughs his high laugh and asks UTM whether G is true or not.
5. If UTM says G is true, then "UTM will never say G is true" is false. If "UTM will never say G is true" is false, then G is false (since G = "UTM will never say G is true"). So if UTM says G is true, then G is in fact false, and UTM has made a false statement. So UTM will never say that G is true, since UTM makes only true statements.
6. We have established that UTM will never say G is true. So "UTM will never say G is true" is in fact a true statement. So G is true (since G = "UTM will never say G is true").
7. "I know a truth that UTM can never utter," Gödel says. "I know that G is true. UTM is not truly universal."

Think about it - it grows on you ...

i really don't get it...i get lost understanding it..
 
Mathematics news on Phys.org
heman said:
The proof of Gödel's Incompleteness Theorem is so simple, and so sneaky, that it is almost embarassing to relate. His basic procedure is as follows:

1. Someone introduces Gödel to a UTM, a machine that is supposed to be a Universal Truth Machine, capable of correctly answering any question at all.
2. Gödel asks for the program and the circuit design of the UTM. The program may be complicated, but it can only be finitely long. Call the program P(UTM) for Program of the Universal Truth Machine.
3. Smiling a little, Gödel writes out the following sentence: "The machine constructed on the basis of the program P(UTM) will never say that this sentence is true." Call this sentence G for Gödel. Note that G is equivalent to: "UTM will never say G is true."
4. Now Gödel laughs his high laugh and asks UTM whether G is true or not.
5. If UTM says G is true, then "UTM will never say G is true" is false. If "UTM will never say G is true" is false, then G is false (since G = "UTM will never say G is true"). So if UTM says G is true, then G is in fact false, and UTM has made a false statement. So UTM will never say that G is true, since UTM makes only true statements.
6. We have established that UTM will never say G is true. So "UTM will never say G is true" is in fact a true statement. So G is true (since G = "UTM will never say G is true").
7. "I know a truth that UTM can never utter," Gödel says. "I know that G is true. UTM is not truly universal."

Think about it - it grows on you ...

i really don't get it...i get lost understanding it..

I see nothing in the statement that says that UTM can't opt to say nothing...

-Dan
 
Then it wouldn't be a "Universal Truth Machine, capable of correctly answering any question at all".

It would instead be a partial truth machine that answers some questions correctly, and doesn't answer other the other questions.
 
heman said:
The proof of Gödel's Incompleteness Theorem is so simple, and so sneaky, that it is almost embarassing to relate. His basic procedure is as follows:

1. Someone introduces Gödel to a UTM, a machine that is supposed to be a Universal Truth Machine, capable of correctly answering any question at all.
2. Gödel asks for the program and the circuit design of the UTM. The program may be complicated, but it can only be finitely long. Call the program P(UTM) for Program of the Universal Truth Machine.
3. Smiling a little, Gödel writes out the following sentence: "The machine constructed on the basis of the program P(UTM) will never say that this sentence is true." Call this sentence G for Gödel. Note that G is equivalent to: "UTM will never say G is true."
4. Now Gödel laughs his high laugh and asks UTM whether G is true or not.
5. If UTM says G is true, then "UTM will never say G is true" is false. If "UTM will never say G is true" is false, then G is false (since G = "UTM will never say G is true"). So if UTM says G is true, then G is in fact false, and UTM has made a false statement. So UTM will never say that G is true, since UTM makes only true statements.
6. We have established that UTM will never say G is true. So "UTM will never say G is true" is in fact a true statement. So G is true (since G = "UTM will never say G is true").
7. "I know a truth that UTM can never utter," Gödel says. "I know that G is true. UTM is not truly universal."

Think about it - it grows on you ...

i really don't get it...i get lost understanding it..


Think about a liar's type paradox- If I write "The following sentence is false. The preceeding sentence is true" Now is that system of sentences consistent? Can you determine truth or falseness from them? No-it is a paradox. This is "essentially" what Godel did, although a Godel statement G is a paradox due to (dis)provability rather than truth/falseness.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 12 ·
Replies
12
Views
7K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 34 ·
2
Replies
34
Views
4K
  • · Replies 54 ·
2
Replies
54
Views
6K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K