Register to reply

I have something that doesn't work out for me

by jacobrhcp
Tags: work
Share this thread:
jacobrhcp
#1
Sep9-07, 02:53 PM
P: 169
I'm going to use this theorem of differential analysis: if g(x) is differentiable between a and b, then there is a c for which [tex]\frac{g(b)-g(a)}{b-a}[/tex]=g'(c)

Let f be differentiable twice, and let f(0)=f'(0)=0 and let f''(x)[tex]\geq[/tex]1 for all x>0

choose g(x) as f'(x), a = 0, b = x
then there is a c so that:
[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f'(x)}{x}[/tex]=f''(c)[tex]\geq[/tex]1 (f''(x) was already bigger then 1)

so f'(x) [tex]\geq[/tex] x (for all x > 0)

now I am going to use the theorem again, saying g(x)=f(x), a = 0, b = x

then there is a c so that:

[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f(x)}{x}[/tex]=f'(c)[tex]\geq[/tex]x

so f(x) [tex]\geq[/tex] x^2 (for all x>0)

but this isn't true. The function 1/2 x^2 also applies for all those things I wanted the function to be, but is smaller than x^2. Anyone knows what I've been doing wrong? This was an old exam exercise, and it's been troubling me since before the holidays.

Ps. this is the first time I did everything with tech on this site, and it's horrible unclear to me if I entered it allright. Hope it worked. If it doesn't, I hope I'll have enough time to edit a bit before someone reads it ^_^
Phys.Org News Partner Science news on Phys.org
Final pieces to the circadian clock puzzle found
A spray-on light show on four wheels: Darkside Scientific
How an ancient vertebrate uses familiar tools to build a strange-looking head
HallsofIvy
#2
Sep9-07, 08:24 PM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,682
Quote Quote by jacobrhcp View Post
I'm going to use this theorem of differential analysis: if g(x) is differentiable between a and b, then there is a c for which [tex]\frac{g(b)-g(a)}{b-a}[/tex]=g'(c)

Let f be differentiable twice, and let f(0)=f'(0)=0 and let f''(x)[tex]\geq[/tex]1 for all x>0

choose g(x) as f'(x), a = 0, b = x
then there is a c so that:
[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f'(x)}{x}[/tex]=f''(c)[tex]\geq[/tex]1 (f''(x) was already bigger then 1)

so f'(x) [tex]\geq[/tex] x (for all x > 0)

now I am going to use the theorem again, saying g(x)=f(x), a = 0, b = x

then there is a c so that:

[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f(x)}{x}[/tex]=f'(c)[tex]\geq[/tex]x
Here's your error. You proved above that [itex]f'(x)\ge x[/itex]. That does NOT give [itex]f'(c)\ge x[/itex], only [itex]f'(c)\ge c[/itex].

so f(x) [tex]\geq[/tex] x^2 (for all x>0)

but this isn't true. The function 1/2 x^2 also applies for all those things I wanted the function to be, but is smaller than x^2. Anyone knows what I've been doing wrong? This was an old exam exercise, and it's been troubling me since before the holidays.

Ps. this is the first time I did everything with tech on this site, and it's horrible unclear to me if I entered it allright. Hope it worked. If it doesn't, I hope I'll have enough time to edit a bit before someone reads it ^_^
jacobrhcp
#3
Sep9-07, 11:54 PM
P: 169
ah of course. that's great. thanks a lot.


Register to reply

Related Discussions
Work in mechanics vs. work in thermodynamics Introductory Physics Homework 3
Work input/output, efficient probelm, just need someone to check my work Introductory Physics Homework 1
Work, Energy and Power (Work Problem) Introductory Physics Homework 9
The work of friction forces - and - the total work of systems Introductory Physics Homework 20
Work question: please check my work Introductory Physics Homework 1