Register to reply

I have something that doesn't work out for me

by jacobrhcp
Tags: work
Share this thread:
jacobrhcp
#1
Sep9-07, 02:53 PM
P: 169
I'm going to use this theorem of differential analysis: if g(x) is differentiable between a and b, then there is a c for which [tex]\frac{g(b)-g(a)}{b-a}[/tex]=g'(c)

Let f be differentiable twice, and let f(0)=f'(0)=0 and let f''(x)[tex]\geq[/tex]1 for all x>0

choose g(x) as f'(x), a = 0, b = x
then there is a c so that:
[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f'(x)}{x}[/tex]=f''(c)[tex]\geq[/tex]1 (f''(x) was already bigger then 1)

so f'(x) [tex]\geq[/tex] x (for all x > 0)

now I am going to use the theorem again, saying g(x)=f(x), a = 0, b = x

then there is a c so that:

[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f(x)}{x}[/tex]=f'(c)[tex]\geq[/tex]x

so f(x) [tex]\geq[/tex] x^2 (for all x>0)

but this isn't true. The function 1/2 x^2 also applies for all those things I wanted the function to be, but is smaller than x^2. Anyone knows what I've been doing wrong? This was an old exam exercise, and it's been troubling me since before the holidays.

Ps. this is the first time I did everything with tech on this site, and it's horrible unclear to me if I entered it allright. Hope it worked. If it doesn't, I hope I'll have enough time to edit a bit before someone reads it ^_^
Phys.Org News Partner Science news on Phys.org
Law changed to allow 'unlocking' cellphones
Microsoft sues Samsung alleging contract breach
Best evidence yet for coronal heating theory detected by NASA sounding rocket
HallsofIvy
#2
Sep9-07, 08:24 PM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,363
Quote Quote by jacobrhcp View Post
I'm going to use this theorem of differential analysis: if g(x) is differentiable between a and b, then there is a c for which [tex]\frac{g(b)-g(a)}{b-a}[/tex]=g'(c)

Let f be differentiable twice, and let f(0)=f'(0)=0 and let f''(x)[tex]\geq[/tex]1 for all x>0

choose g(x) as f'(x), a = 0, b = x
then there is a c so that:
[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f'(x)}{x}[/tex]=f''(c)[tex]\geq[/tex]1 (f''(x) was already bigger then 1)

so f'(x) [tex]\geq[/tex] x (for all x > 0)

now I am going to use the theorem again, saying g(x)=f(x), a = 0, b = x

then there is a c so that:

[tex]\frac{g(b)-g(a)}{b-a}[/tex]=[tex]\frac{f(x)}{x}[/tex]=f'(c)[tex]\geq[/tex]x
Here's your error. You proved above that [itex]f'(x)\ge x[/itex]. That does NOT give [itex]f'(c)\ge x[/itex], only [itex]f'(c)\ge c[/itex].

so f(x) [tex]\geq[/tex] x^2 (for all x>0)

but this isn't true. The function 1/2 x^2 also applies for all those things I wanted the function to be, but is smaller than x^2. Anyone knows what I've been doing wrong? This was an old exam exercise, and it's been troubling me since before the holidays.

Ps. this is the first time I did everything with tech on this site, and it's horrible unclear to me if I entered it allright. Hope it worked. If it doesn't, I hope I'll have enough time to edit a bit before someone reads it ^_^
jacobrhcp
#3
Sep9-07, 11:54 PM
P: 169
ah of course. that's great. thanks a lot.


Register to reply

Related Discussions
Work in mechanics vs. work in thermodynamics Introductory Physics Homework 3
Work input/output, efficient probelm, just need someone to check my work Introductory Physics Homework 1
Work, Energy and Power (Work Problem) Introductory Physics Homework 9
The work of friction forces - and - the total work of systems Introductory Physics Homework 20
Work question: please check my work Introductory Physics Homework 1