Register to reply

Forces, action and reaction pairs

by mkwok
Tags: action, forces, pairs, reaction
Share this thread:
mkwok
#1
Nov4-07, 11:26 PM
P: 23
1. The problem statement, all variables and given/known data
A high diver of mass 83.0 kg jumps off a board 10.0 m above the water. If his downward motion is stopped 1.90 s after he enters the water, what average upward force did the water exert on him?


2. Relevant equations
[tex]\sum[/tex]Forces = ma
X=X[tex]_{0}[/tex]+V[tex]_{i}[/tex]+1/2at



3. The attempt at a solution
the total force exerted by the diver on the water is:
[tex]\sum[/tex]Forces = 83kg*9.8 (gravitational acceleration) = 813.4N
then with the given time.. i don't know how to solve for the upward force
Phys.Org News Partner Science news on Phys.org
Sapphire talk enlivens guesswork over iPhone 6
Geneticists offer clues to better rice, tomato crops
UConn makes 3-D copies of antique instrument parts
catkin
#2
Nov4-07, 11:41 PM
P: 218
Would be easier to equate Potential Energy (P.E. = mgh, turned into Kinetic Energy) with work done (W = F x d).
mkwok
#3
Nov5-07, 12:19 AM
P: 23
Quote Quote by catkin View Post
Would be easier to equate Potential Energy (P.E. = mgh, turned into Kinetic Energy) with work done (W = F x d).
sorry, but I haven't learned that, and i'm not suppose to know how to do it that way

catkin
#4
Nov5-07, 12:35 AM
P: 218
Forces, action and reaction pairs

OK. How about working out velocity when diver hits water and average deceleration after that?
mkwok
#5
Nov5-07, 03:10 AM
P: 23
well, first I used: Xf = X0 + Vit + 1/2at
let Xf = 0, X0 = 10m , Vi=0 , a= 9.8m/s^2

therefore 0 = 10 + 1/2(-9.8)t solve for t = 2.04

if Vf = Vi + at, since Vi=0, Vf = the velocity when it hits the water = (9.8)(2.04) = 19.992 m/s
------- for the second part (when the person enters water) ----
Vi=19.992m/s, Vf = 0, t=1.90

therefore, using the equation : Vf = Vi + at
0 = 19.992 + a(1.90)
therefore a = -10.552 m/s^2

finally, force = mass * acelleration ==> force = 10.552*83kg = 875.816N

Since I am suppose to convert the force into kN, do I do the following operation?
875.816N * (1kN/1000N) = 0.875816kN
nova-ex
#6
Nov5-07, 04:47 AM
P: 15
Hi,

Your method, including the kN portion, looks correct (Assuming you didn't make any computation errors). However, you may want to use another formula (also derived from these two) which would allow you to skip a step.

(Vf)^2 = (Vi)^2 + 2aX

This would save you having to compute time.
catkin
#7
Nov5-07, 07:20 AM
P: 218
Your answer should be no more precise than the data given. The question includes 83.0, 10.0 and 1.90. The first two indicate 3 significant figures; the last may indicate 2 or 3 so it's reasonable to take it as 3 for consistency.

So, assuming your answer is numerically correct, it should be given as 0.876 kN.

Regards the distance-velocities-acceleration-time equations, it is helpful to know 5 forms, one omitting each variable. Using your variable symbols:

No [itex] x [/itex]: [itex] v_{f} = v_{i} + at [/itex]
No [itex] v_{i} [/itex]: [itex] x = v_{f}t - Żat^{\:2} [/itex]
No [itex] v_{f} [/itex]: [itex] x = v_{i}t + Żat^{\:2} [/itex]
No [itex] a [/itex]: [itex] x = Ż(v_{i} + v_{f})t [/itex]
No [itex] t [/itex]: [itex] v_{f}^{\:2} = v_{i}^{\:2} + 2ax [/itex]

Usually you will know 3 of the five variables and be required to find one of the others; the easiest equation to use is the one that omits the 5th.

For example, in this problem, when you want to find the divers' velocity on hitting the water water you know [itex] x [/itex], [itex] v_{i} [/itex], [itex] a [/itex] and [itex] x [/itex]. You want to find [itex] v_{f} [/itex]. So the easiest equation to use is the one that omits [itex] t [/itex]: [itex] v_{f}^{\:2} = v_{i}^{\:2} + 2ax [/itex]


Register to reply

Related Discussions
Action/reaction : if we do an action that requires energy of the whole universe General Physics 2
Action-Reaction Forces (Simple Problems) Introductory Physics Homework 6
Action-Reaction pairs... Introductory Physics Homework 18
Contact forces and action-at-a-distance forces..... General Physics 1