proving an intersection empty set

by rbzima
Tags: intersection, proving
rbzima is offline
Jan30-08, 06:10 PM
P: 86
I'm trying to prove

[tex]\bigcap^{\infty}_{n=1}(0,1/n) = [/tex] EMPTY SET.

One thing that I can't seem to bypass is getting past the closed intervals as stated in the Nested Interval Property, which states "For each [tex]n\in[/tex] N, assume we are given a closed interval [tex]I_n = [a_n, b_n] = {x \in[/tex] R [tex]: a_n \leq x \leq b_n}[/tex]. Assume also that each [tex]I_n[/tex] contains [tex]I_n_+_1[/tex].

Therefore, [tex]\bigcap^{\infty}_{n=1}I_n \neq [/tex] EMPTY SET.

Basically, I'm stuck at taking care of the open interval part of this proof. The original for R was proved by showing sup A = x, then x is between the closed interval. Any advice would be great!
Phys.Org News Partner Science news on
Simplicity is key to co-operative robots
Chemical vapor deposition used to grow atomic layer materials on top of each other
Earliest ancestor of land herbivores discovered
d_leet is offline
Jan31-08, 12:16 AM
P: 1,076
Obviously the intersection is a subset of (0,1), Why? So it will suffice to show that for any x in (0,1) that there exists a set of the form (0, 1/n) to which x does not belong. So basically given x in (0,1) can you figure out how to find n such that x does not belong to (0, 1/n)?

Register to reply

Related Discussions
Intersection of surfaces Calculus 5
Intersection between surfaces Calculus & Beyond Homework 2
A Simple intersection General Math 3
Intersection of subspaces Introductory Physics Homework 4
Intersection of subspaces Introductory Physics Homework 1