Register to reply

Beam bending

by ttlg
Tags: beam, bending
Share this thread:
ttlg
#1
May8-08, 07:22 AM
P: 2
If you have two beams, not attatched to each other, placed on top of each other in 3 point bending simply supported, what do you do to find the first moment of area and moment inertia of the two beams.
Thanks
Phys.Org News Partner Engineering news on Phys.org
Researchers use 3D printers to create custom medical implants
For secure software: X-rays instead of passport control
Razor-sharp TV pictures
FredGarvin
#2
May8-08, 10:30 AM
Sci Advisor
FredGarvin's Avatar
P: 5,095
If you assume that they will always stay in contact, then the parallel axis theorem is what you need.

http://hyperphysics.phy-astr.gsu.edu...parax.html#pax
Q_Goest
#3
May8-08, 11:22 AM
Sci Advisor
HW Helper
PF Gold
Q_Goest's Avatar
P: 2,905
Hi Fred,
I think what ttlg is asking is if the two beams are simply sitting on top of each other such that there can be no transverse shear between the two (like a leaf spring on a car). The two beams, stacked one on top of the other, are then simply supported at the ends and loaded in the center with a verticle force. In that case, since there's no transverse shear between the two (ie: the beams act independantly) the parallel axis theorem doesn't apply to the beams as a set. In this case, the load acting on the beams can simply be split 50/50 between the two beams (each beam supports 1/2 the load).

FredGarvin
#4
May8-08, 03:57 PM
Sci Advisor
FredGarvin's Avatar
P: 5,095
Beam bending

Q,
The loads can be split the way you mention, but to find the area MOI of the assembly, i.e. the composite section, one needs to use the parallel axis theorem. I am using the interface between the two beams as the neutral axis (with no shear between the two as you mentioned). From there take the two individual beams' respective area MOIs and use the parallel axis theorem to calculate the overall area MOI.
ttlg
#5
May9-08, 10:56 AM
P: 2
ok, thanks for your help
FredGarvin
#6
May12-08, 09:23 AM
Sci Advisor
FredGarvin's Avatar
P: 5,095
Quote Quote by FredGarvin View Post
Q,
The loads can be split the way you mention, but to find the area MOI of the assembly, i.e. the composite section, one needs to use the parallel axis theorem. I am using the interface between the two beams as the neutral axis (with no shear between the two as you mentioned). From there take the two individual beams' respective area MOIs and use the parallel axis theorem to calculate the overall area MOI.
Quote Quote by QGoest
since there's no transverse shear between the two (ie: the beams act independantly) the parallel axis theorem doesn't apply to the beams as a set.
Looking at Q's comments about the shear stress...he's right on that. The MOI is simply two times the individual MOIs.


Register to reply

Related Discussions
Beam bending Classical Physics 2
Beam bending Engineering, Comp Sci, & Technology Homework 1
Bending for beam - deflection Engineering, Comp Sci, & Technology Homework 5
Beam Bending & Stress Mechanical Engineering 1