What is the Basis for the Polynomial Vector Spaces S, T, and S∩T?

Click For Summary
SUMMARY

The discussion focuses on finding a basis for the polynomial vector spaces S, T, and their intersection S∩T, where S consists of polynomials in P3 such that p(0) = 0 and T consists of polynomials such that q(1) = 0. The basis for S is determined to be {x^2, x}, while the basis for T is {x^2 - 1, x - 1}. The intersection S∩T includes polynomials that satisfy both conditions, leading to a basis of the form {x^2 - 1, x - 1}. The participants clarify the relationships between polynomial coefficients and their corresponding vector representations.

PREREQUISITES
  • Understanding of polynomial vector spaces and their properties.
  • Familiarity with linear independence and spanning sets in vector spaces.
  • Knowledge of polynomial evaluation at specific points (e.g., p(0), q(1)).
  • Basic linear algebra concepts, including coefficient matrices and vector representation.
NEXT STEPS
  • Study the properties of polynomial vector spaces in detail.
  • Learn about linear independence and spanning sets in greater depth.
  • Explore the concept of polynomial bases and their applications in linear algebra.
  • Investigate the intersection of vector spaces and how to derive bases from them.
USEFUL FOR

Students of linear algebra, mathematicians working with polynomial functions, and educators teaching vector space concepts will benefit from this discussion.

aredian
Messages
15
Reaction score
0

Homework Statement


Let S be the subspace P3 consisting of all polynomials P(x) such that p(0) = 0, and let T be the subspace of all polynomials q(x) such that q(1) = 0. Find a basis for S, T and S\capT

Homework Equations





The Attempt at a Solution


I know that a basis is formed by linearly independent vectors which also generate the space thay belong to. And is true for polynomials that L.I. can be drawn for the coeff matrix that results from the vector grouping the terms by the powers of X.
What I am not sure is what p(0) = 0 and q(1) = 0 means. Is it 0, 0X, 0X^2 = 0 and 1, x, x^2 = 0?

I know it is supposed to be a simple question or at least that's how I see it, but I took my last math course about 7 years ago, and I can't find a resource to clarify that for the moment.

Thanks for your help.
 
Physics news on Phys.org
A polynomial p(x) in your space looks like p(x)=a+bx+cx^2. p(0)=0 means a=0. p(1)=0 means a+b+c=0. Nothing mysterious about this...
 
OK... Now I am a bit more confused. Does that means the vectors in p(0) = 0 grouped by the powers of X would be of the form (0 0 1)^{T}?

If so, then I take say 2 vectors, A and B, and need to verify they are L.I. and if they span S in order to declare them a basis of S.

How do I get a basis out of 2 vectors of the form (0 0 1)^{T}?
 
If you are grouping powers in the order 1,x,x^2, then p(x)=a+bx+cx^2 becomes (a,b,c)^T. p(x)=0 tells you a=0. So the vectors in S look like (0,b,c)^T for any choice of b and c. Now tell me what a basis is.
 
You have chosen to identify the space you call P3 with column vectors with 3 elements. How have you done this? How did you associate the polynomials with constant coefficient 0 with a single vector (0,0,1)^t ?
 
Dick said:
If you are grouping powers in the order 1,x,x^2, then p(x)=a+bx+cx^2 becomes (a,b,c)^T. p(x)=0 tells you a=0. So the vectors in S look like (0,b,c)^T for any choice of b and c. Now tell me what a basis is.

Since the vectors are of the type (a, b, 0) grouping by x^2, x, 1 then taking a linear combination of these, I can tell a(1,0,0)^T + b(0,1,0) = (x^2, x, 1) and use it to determine if they span S. They DO!. On the other hand the coeff matriz [(1,0,0)^T (0,1,0)^T] is non singular so these vectors are L.I. Thus a basis for S would be of the form {x^2, x}

Correct?

Thank you very much!
 
aredian said:
Since the vectors are of the type (a, b, 0) grouping by x^2, x, 1 then taking a linear combination of these, I can tell a(1,0,0)^T + b(0,1,0) = (x^2, x, 1) and use it to determine if they span S. They DO!. On the other hand the coeff matriz [(1,0,0)^T (0,1,0)^T] is non singular so these vectors are L.I. Thus a basis for S would be of the form {x^2, x}

Correct?

Thank you very much!

Correct.
 
Dick said:
A polynomial p(x) in your space looks like p(x)=a+bx+cx^2. p(0)=0 means a=0. p(1)=0 means a+b+c=0. Nothing mysterious about this...

Great!

Now for T... Are the vectors of T (p(1) = 0) of the form (a, b, -(a+b)) ? grouping well x^2, x, 1

Im not sure about the vectors in S \capT. Are they of the form (a, b, c) for c=0 or only (a, b)?

Thanks for your help!
 
Last edited:
They are of the form (a,b,c) where a+b+c=0, right? Can you use that relationship to eliminate a variable in the vector and find a basis? A basis vector for S intersect T has to be in both spaces.
 
  • #10
Dick said:
They are of the form (a,b,c) where a+b+c=0, right? Can you use that relationship to eliminate a variable in the vector and find a basis? A basis vector for S intersect T has to be in both spaces.

Ok... since c = -a -b I can use
ax^2 + bx + (-a -b)1. Correct?

This would yield the vectors of the form (a, b, -(a+b)) and their lineal combination would be of the form a(1,0,-1)^T + b(0,1,-1)^T = (x^2, x, 1). The coeff matrix is non singular so they are LI. However something is wrong with my algebra, because I can't seem to find the correct coeffs, such that they span T.

Where these the corect vectors at all?
 
  • #11
Ok, a general vector in T is (a,b,-(a+b)) as you said. a*(1,0,-1)+b*(0,1,-1)=(a,b,-(a+b)), as you implied. So it looks me like they span.
 
  • #12
Dick said:
Ok, a general vector in T is (a,b,-(a+b)) as you said. a*(1,0,-1)+b*(0,1,-1)=(a,b,-(a+b)), as you implied. So it looks me like they span.

Yes indeed and the base is of the form {x^2-1, x-1}

Thanks!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
9
Views
2K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K