reaction diffusion problem concentric spheres

by scg08
Tags: reaction diffusion
scg08 is offline
Apr30-09, 07:54 AM
P: 1

I am trying to (numerically) solve the following reaction-diffusion equation for the probability density of the a pair, [tex]\rho (\vec{r}_1,\vec{r}_2)[/tex]:

[tex]\dot{\rho} (\vec{r}_1,\vec{r}_2,t) = D_1 \nabla^2_1 \rho (\vec{r}_1,\vec{r}_2,t) + D_2 \nabla^2_2 \rho (\vec{r}_1,\vec{r}_2,t) - k \left( \left\| \vec{r}_1 - \vec{r}_2 \right\| \right) [/tex],

where the subscripts refer to the first and second particle, respectively. In 2D and polar coordinates, [tex]r_i[/tex] and [tex]\theta_i [/tex]:

[tex] \nabla^2_i = \frac{1}{r_i} \frac{\partial}{\partial r_i} r_i \frac{\partial}{\partial r_i} + \frac{1}{r_i^2} \frac{\partial}{\partial \theta_i} [/tex].

The domain is confined by two concentric spheres: [tex] 0 \leq \left\| \vec{r}_1 \right\| \leq R [/tex] and [tex] \left\| \vec{r}_2 \right\| \geq R [/tex]. The initial condition are spherically symmetric, i.e. only depends on the [tex]r_i[/tex]s. The reaction term is a function of the distance of the two particles, i.e. in 2D [tex] k( \left\| \vec{r}_1 - \vec{r}_2 \right\| ) = k( \sqrt{r_1^2 + r_2^2 - 2 r_1 r_2 \cos ( \theta_1-\theta_2)} ) [/tex]. I hoped to get rid of at least 1 coordinate by a variable transformation and separation of variables. However, so far I just could not come up with a separable problem. Do I really have to retain all 4 variables? Any suggestions of how to reduce this problem to something manageable are highly welcome. Eventually I will be interested in 3D and 4D as well.

Thank you,
Phys.Org News Partner Science news on
Going nuts? Turkey looks to pistachios to heat new eco-city
Space-tested fluid flow concept advances infectious disease diagnoses
SpaceX launches supplies to space station (Update)
matematikawan is offline
May14-09, 10:24 AM
P: 330
Just throwing idea.

If the forces between particles 1 and 2 are conservative, try working in the centre of mass frame. In mechanics we use this frame to solve the central force motion and scattering problem.

Register to reply

Related Discussions
Potential between 2 concentric spheres Advanced Physics Homework 4
Gauss's Law/Energy Problem with Concentric Spheres Introductory Physics Homework 8
Capacitance of a system of 3 concentric spheres Introductory Physics Homework 0
Electric Potentials: concentric spheres Introductory Physics Homework 3
two concentric spheres Introductory Physics Homework 8