Register to reply 
Beam selection where moment capacity is exceeded 
Share this thread: 
#1
Dec2809, 04:29 PM

P: 15

Hi,
I'm having difficulty with an assignment. Briefly, the question relates to a simply supported I beam containing a UDL and a point load. I've calculated the maximum bending moment resulting from these loads (neglecting beam mass) to be 5625kNm. I must select a universal beam from grade 43 steel (yield = 275 MN/m^{2}) that can support this loading scenario. Long story short, using this material the required elastic section modulus (20454.55cm^{3}) is just too high for any standard beams. I've been told I cannot change the material, loading or fixing scenerio and that I have to 'find a way around' the problem. Approach 1 I was considering using the UTS for grade 43 steel (430 MN/m^2) which would solve the problem, but that surely doesn't lend itself well to sound engineering practice. Approach 2 The other thing I found is that on http://www.corusconstruction.com/en/...bs5950_part_1/ moment capacity for a simply supported beam is the lesser of Mc = py.Sx and Mc = 1.2 py.Zx Where Py is material yield strength, Sx is plastic section modulus and Zx is elastic section modulus. I have read BS 5950 and it seems to back this up. Approach 3 Could I stack two I beams on top of each other? How would this affect the second moment of area (would it be double, or .. just over double of one beam)? I am confident I could produce answers which make sense (to me) but I obviously need to produce answers that have resulted from sound engineering process. Which approach should I use? Or maybe none of the above!? Any help would be appreciated. 


#2
Dec2809, 05:40 PM

Sci Advisor
HW Helper
PF Gold
P: 6,043

I don't use SI, so I take your word for it that the section modulus required is beyond that of a 'universal' beam. The required modulus is largely a matter of codes, using a safety factor or overload factor of some sort. You can put two together, or use a cover plated beam, or a built up section, etc. If you put two beams together, you must be sure to size the welds (or space the bolts) between the 2 to carry the longitudinal shear, so that the composite beam can work together with a large second moment of area of the overall shape (I = sum of (I +Ad^2) of each beam).



#3
Dec2909, 05:21 PM

P: 15

Hey, thanks for the reply.
A quick question. What is the difference between elastic modulus and plastic modulus (in this context)? I realise that elastic deformation is nonpermanent (elastic band) and plastic deformation is permanent (snapping/bending a ruler), but why is there a difference in the quoted values for elastic and plastic modulus? For example In beam x (picked at random), Elastic Modulus (xx axis) = 1571cm^{3} Plastic Modulus (xx axis) = 1811cm^{3} Surely once you exceed the elastic modulus you create plastic deformation? Why is there a grey area in between? Is this the safety factor you refer too? I believe the correct approach for this question is to recalculate the values using the plastic modulus as a limiting factor (ie, the bending moment absolutely cannot exceed this capacity), but I would like to be able to justify my approach. Any help would be appreciated. 


#4
Dec2909, 08:42 PM

Sci Advisor
HW Helper
PF Gold
P: 6,043

Beam selection where moment capacity is exceeded
NOTE: What I have called S, the elastic modulus, you have called Z. I'm from the States, you know... 


#5
Dec3009, 06:40 AM

P: 15

PhanthomJay you are a gent. Thank you very much for your assistance!



#6
Jan910, 04:30 PM

P: 699

Well, I am always using plastic modulus in structural engineering practice to determine the collapse load of a beam like this, and the second moment of area to determine deflections. The elastic modulus can be used, as Phantom says, with a safety factor. The formulas are looking similar but conceptually different. f=M/Z for elastic stress and fy=Mp/Sx for plastic analysis. The answer given by Phantom illustrates how culturally different is engineering in UK and USA. In UK we always use SI units now, and wonder why the USA doesn't do it too. The 'grey area' in between the use of Z and S represents a zone of stress redistribution which gives rise to higher load capacity. Finally, you could use more than one beam shoulder to shoulder.



#7
Jan910, 06:54 PM

Sci Advisor
HW Helper
PF Gold
P: 6,043

"They" tried to convert us to SI 40 years ago. In spite of laws and pseudo laws, it was not meant to be, and I suspect it will be at least another 40 before the USA ever converts, at least in the field of Structural Engineering. All structural engineers and construction folks are very familiar with psi for stress, cubic yards for concrete volume, inchpounds or foot pounds for moments, pounds for force and weight, feet and miles for distance, etc., the list goes on. If I ever told a contractor to tighten up a wire to so many newtons or kN or MN, insted of so many pounds, he'd tell me to go jump in a lake and speak "English". Conversion would be disastrous, because then familiarity of the units would be lost. It would also be extremely costly. The Codes often address SI units, but we don't pay attention to them. I rip them to avoid turning to the wrong page. Like it or hate it (I'll admit its not a friendly system), pounds and feet and miles and inches and fractions of inches are here to stay in the USA for a long, long, time.



Register to reply 
Related Discussions  
IBeam load capacity question, what beam for 70 tons?  General Engineering  1  
Bending moment of beam  Engineering, Comp Sci, & Technology Homework  6  
Moment on a beam  Advanced Physics Homework  2  
Beam with a moment  Classical Physics  1  
Point moment in a beam  Classical Physics  1 