Register to reply

Thermodynamic potentials

by Lojzek
Tags: potentials, thermodynamic
Share this thread:
Jun15-10, 11:03 AM
P: 249
I have some questions about thermodynamic potentials (internal energy U, enthalpy H, Helmholz free energy F, Gibbs free energy G):

1. The differentials of potentials:


Do this equations apply only for a single homogeneous system or can they be used for a system composed of several different subsystems?

Example: Let's have N subsystems, each respecting the equation


does it always follow that dU<=TdS-pdV? I think I can prove this if all pressures and
temperatures are equal. Can this equation also be used if pressures and temperatures of subsystems are not equal? In this case, should we use the outside temperature and pressure for the equation corresponding to the whole system? Can similar generalization be used for other potentials?

2. In which cases the can we get inequalities like dU<TdS-pdV? Do inequalites have
anything to do with irreversible processes (how do we explain the connection)? Also can we get inequalites if we only have one homogeneous system (I suppose not, since the state of such system is completely determined by two thermodynamic variables)?

3. What are the relations between minimum values of potentials and equilibrium states?
Can we determine equilibrium states by minimizing potentals?

If T and V are constant, then
I think this means that F can no longer change once it reaches its minimum, so its minimum is an equilibrium state. But it does not seem obvious that this is the only possible equilibrium state.
Phys.Org News Partner Physics news on
Step lightly: All-optical transistor triggered by single photon promises advances in quantum applications
The unifying framework of symmetry reveals properties of a broad range of physical systems
What time is it in the universe?

Register to reply

Related Discussions
Why are only five out of eight possible thermodynamic potentials important? Advanced Physics Homework 1
Thermodynamic potentials and equilibrium Classical Physics 8
Thermodynamic potentials Introductory Physics Homework 1
Help with thermodynamic potentials Classical Physics 10