Register to reply

Maximums and Minimums

by hitmeoff
Tags: maximums, minimums
Share this thread:
hitmeoff
#1
Oct2-10, 11:33 PM
P: 261
Hello all,

I am currently taking Intro to Real Analysis and we are using Elementary Analysis by Ross. We are on Section 4, dealing with the completeness axiom, but we have only got as far as defining the minimum and maximum of a set (we have not discussed the completeness axiom, archimedean property, upper/lower bounds, supremums/infimums).

We went over Ross' examples in class and I have revied the examples myself and I am confused why the following is so:

1) The set {r in Q: 0 =< r =< Sqrt(2)} has a minimum, namely 0, but no maximum. This is because Sqrt(2) does not belong to the set, but there are rationals in the set arbitrarily close to Sqrt(2).

Ok, I get that. But the next example says:

2) Consider the set {n^(-1^n) : n in N}. This is shorthand for the set {1, 2, 1/3, 4, 1/5, 6, 1/7....} The set has no maximum and no minimum.

Ok, I understand why there is no maximum to the set, there are infinitely many more naturals that this set generates (ie. 8, 10, 12, 14.. -> infinity). What I do not understand is why is the lower limit not 1? 1 is the smallest possible natural number in this set. I know the set continues towards zero getting closer and closer to zero without ever reaching there, but those fractions are not naturals.

If in the first exampl2 Sqrt(2) is not the max because it is not a rational and you can get infinitely many rationals on your way to Sqrt(2) (ie. the max is restricted to rationals) why is the minimum of the second example not 1 (if we are restricting the min to naturals)?

Is it because the set in the first example is explicitly bounded by 1 and Sqrt(2) but the set in the second example is not explicitly limited?
Phys.Org News Partner Science news on Phys.org
Wildfires and other burns play bigger role in climate change, professor finds
SR Labs research to expose BadUSB next week in Vegas
New study advances 'DNA revolution,' tells butterflies' evolutionary history
hitmeoff
#2
Oct3-10, 10:16 AM
P: 261
Anyone?
HallsofIvy
#3
Oct3-10, 10:30 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,361
Quote Quote by hitmeoff View Post
Hello all,

I am currently taking Intro to Real Analysis and we are using Elementary Analysis by Ross. We are on Section 4, dealing with the completeness axiom, but we have only got as far as defining the minimum and maximum of a set (we have not discussed the completeness axiom, archimedean property, upper/lower bounds, supremums/infimums).

We went over Ross' examples in class and I have revied the examples myself and I am confused why the following is so:

1) The set {r in Q: 0 =< r =< Sqrt(2)} has a minimum, namely 0, but no maximum. This is because Sqrt(2) does not belong to the set, but there are rationals in the set arbitrarily close to Sqrt(2).

Ok, I get that. But the next example says:

2) Consider the set {n^(-1^n) : n in N}. This is shorthand for the set {1, 2, 1/3, 4, 1/5, 6, 1/7....} The set has no maximum and no minimum.

Ok, I understand why there is no maximum to the set, there are infinitely many more naturals that this set generates (ie. 8, 10, 12, 14.. -> infinity). What I do not understand is why is the lower limit not 1? 1 is the smallest possible natural number in this set. I know the set continues towards zero getting closer and closer to zero without ever reaching there, but those fractions are not naturals.
It said "n in N". That does NOT mean that the numbers in the set are in N! The numbers in the set are, as it said, 1, 2, 1/3, etc. It would not say those numbers are in the set if it were intended to restrict the set to the integers.

If in the first exampl2 Sqrt(2) is not the max because it is not a rational and you can get infinitely many rationals on your way to Sqrt(2) (ie. the max is restricted to rationals) why is the minimum of the second example not 1 (if we are restricting the min to naturals)?
Because the first example specifically said that the numbers in the set were natural numbers. The second example said the number, n, used to generate the numbers in the set was restricted to the natural numbers but did NOT say that the numbers in the set had to be natural numbers and the numbers shown as belonging to the set are clearly NOT natural numbers.

Is it because the set in the first example is explicitly bounded by 1 and Sqrt(2) but the set in the second example is not explicitly limited?
No, the first set is clearly has 0 as a lower bound, whether "explicite" or not.

hitmeoff
#4
Oct3-10, 12:42 PM
P: 261
Maximums and Minimums

Ok, I think I get it. Maybe I am getting confused on reading set notation.

So if we say the set S = {r in Q: 0 =< r =< Sqrt(2)} is like saying the set of rationals ranging from [0, Sqrt(2)] In which case 0 is a rational and the smallest value of the set so its the minumum and there is no maximum because there are infinitely many rationals on the way to Sqrt(2).

and

set T = {n^(-1^n) : n in N} is like saying the set of values generated by the function n^(-1^n) with the naturals as input. There is no min or max because there is no minimum or maximum value to the function.

Am I right on this? If I am, then let me point out a third example given by the professor:

{n in Z: 1 =< ln n =< 10} So do I read this "the set of values given by the function ln n, in the range [1, 10], with integers as the input"? So why is the min of this set 3? I know e^1 is 2.7... so the nearest integer is 3, but why are we restricting the min to just integers? obviously n can only be those numbers in the interval [e^1, e^10], I just dont get how 3 is even a member of this set? Is this set not: {ln 3, ln 4, ln 5....ln 22026} (e^10 = 22026.46...}

Or should I read {n in Z: 1 =< ln n =< 10} like "the set of integers n, subject to the function ln n in the interval [1,10]" in which case the integer 3 is the smallest integer that, when subject to ln n, gives a value that is in the interval [1,10]? Would the max of this set then be 22026?
hitmeoff
#5
Oct4-10, 01:41 AM
P: 261
Quote Quote by hitmeoff View Post

Or should I read {n in Z: 1 =< ln n =< 10} like "the set of integers n, subject to the function ln n in the interval [1,10]" in which case the integer 3 is the smallest integer that, when subject to ln n, gives a value that is in the interval [1,10]? Would the max of this set then be 22026?
In other words, is this set : {3, 4, 5,....22026}?


Register to reply

Related Discussions
Maximums and minimums Calculus & Beyond Homework 5
Mohr's Circle and understanding its maximums and minimums Classical Physics 2
How to find global/local minimums/maximums. Calculus 2
Maximums and minimums Calculus & Beyond Homework 7
Finding maximumx and minimums Calculus & Beyond Homework 5