Register to reply 
Maximums and Minimums 
Share this thread: 
#1
Oct210, 11:33 PM

P: 261

Hello all,
I am currently taking Intro to Real Analysis and we are using Elementary Analysis by Ross. We are on Section 4, dealing with the completeness axiom, but we have only got as far as defining the minimum and maximum of a set (we have not discussed the completeness axiom, archimedean property, upper/lower bounds, supremums/infimums). We went over Ross' examples in class and I have revied the examples myself and I am confused why the following is so: 1) The set {r in Q: 0 =< r =< Sqrt(2)} has a minimum, namely 0, but no maximum. This is because Sqrt(2) does not belong to the set, but there are rationals in the set arbitrarily close to Sqrt(2). Ok, I get that. But the next example says: 2) Consider the set {n^(1^n) : n in N}. This is shorthand for the set {1, 2, 1/3, 4, 1/5, 6, 1/7....} The set has no maximum and no minimum. Ok, I understand why there is no maximum to the set, there are infinitely many more naturals that this set generates (ie. 8, 10, 12, 14.. > infinity). What I do not understand is why is the lower limit not 1? 1 is the smallest possible natural number in this set. I know the set continues towards zero getting closer and closer to zero without ever reaching there, but those fractions are not naturals. If in the first exampl2 Sqrt(2) is not the max because it is not a rational and you can get infinitely many rationals on your way to Sqrt(2) (ie. the max is restricted to rationals) why is the minimum of the second example not 1 (if we are restricting the min to naturals)? Is it because the set in the first example is explicitly bounded by 1 and Sqrt(2) but the set in the second example is not explicitly limited? 


#2
Oct310, 10:16 AM

P: 261

Anyone?



#3
Oct310, 10:30 AM

Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,300




#4
Oct310, 12:42 PM

P: 261

Maximums and Minimums
Ok, I think I get it. Maybe I am getting confused on reading set notation.
So if we say the set S = {r in Q: 0 =< r =< Sqrt(2)} is like saying the set of rationals ranging from [0, Sqrt(2)] In which case 0 is a rational and the smallest value of the set so its the minumum and there is no maximum because there are infinitely many rationals on the way to Sqrt(2). and set T = {n^(1^n) : n in N} is like saying the set of values generated by the function n^(1^n) with the naturals as input. There is no min or max because there is no minimum or maximum value to the function. Am I right on this? If I am, then let me point out a third example given by the professor: {n in Z: 1 =< ln n =< 10} So do I read this "the set of values given by the function ln n, in the range [1, 10], with integers as the input"? So why is the min of this set 3? I know e^1 is 2.7... so the nearest integer is 3, but why are we restricting the min to just integers? obviously n can only be those numbers in the interval [e^1, e^10], I just dont get how 3 is even a member of this set? Is this set not: {ln 3, ln 4, ln 5....ln 22026} (e^10 = 22026.46...} Or should I read {n in Z: 1 =< ln n =< 10} like "the set of integers n, subject to the function ln n in the interval [1,10]" in which case the integer 3 is the smallest integer that, when subject to ln n, gives a value that is in the interval [1,10]? Would the max of this set then be 22026? 


#5
Oct410, 01:41 AM

P: 261




Register to reply 
Related Discussions  
Maximums and minimums  Calculus & Beyond Homework  5  
Mohr's Circle and understanding its maximums and minimums  Classical Physics  2  
How to find global/local minimums/maximums.  Calculus  2  
Maximums and minimums  Calculus & Beyond Homework  7  
Finding maximumx and minimums  Calculus & Beyond Homework  5 