Register to reply

2nd order differential equation in Reaction Engineering

by FaNgS
Tags: energy balance, mole balance, ode
Share this thread:
May8-11, 11:44 AM
P: 92
There's a catalyst pellet in a reactor and I'm supposed to prove an equation for the maximum temperature which is:

Tmax=Ts +[(-H)*(D*Cas)]/k

First thing I did was develop an Energy Balance across the spherical catalyst and I got the following equation:

(1/r^2)*d/dr(r^2*k*dT/dr) + (-H)*(-Rxn) = 0

expanding i get:

d^2T/dr^2 + (2/r)*dT/dr + (-H)*(-Rxn)/k = 0

Boundary Conditions: at r=0, dT/dr =0 AND at r=R, T=Ts (at the catalyst surface i.e. r=R the temperature T = Ts (catalyst surface temperature))

Using the boundary conditions and integrating factor I got
T=Ts + [(-H)(-Rxn)*(R^2-r^2)]/(6*k) ......(eqn 1)

Now for the mole balance across the catalyst I got (where Ca is the concentration):

d^2Ca/dr^2 + (2/r)*dCa/dr - (k/D)*Ca =0 ...... (eqn 2)

Boundary Condition: at r=R, Ca=Cas

Can someone confirm the equation I got for temperature (eqn 1) and also for the concentration (eqn 2) how do I go about to solve it??

I tried another way to solve it, as suggested by my instructor, which is by using the un-expanded forms of the energy and mole balance equations which are:

(1/r^2)*d/dr(r^2*k*dT/dr) + (-H)*(-Rxn) = 0

(1/r^2)*d/dr(r^2*D*dCa/dr) + (Rxn) = 0

So here I have the "Rxn" term common in both equations and I combined and got the following after some simplifications:

d^2Ca/dr^2 + 2*dCa/dr = [k/(H*D)]* { r*d^2T/dr^2 + 2*dT/dr}

But in this case it looks way more complicated and I'm not sure how to deal with this type of an equation, since I have 2 derivates on both sides of the equation one with respect to the Concentration Ca and one with respect to temperature T.

not sure which way to proceed and how to proceed
Phys.Org News Partner Science news on
New type of solar concentrator desn't block the view
Researchers demonstrate ultra low-field nuclear magnetic resonance using Earth's magnetic field
Asian inventions dominate energy storage systems
May11-11, 06:17 AM
P: 759
Let Ca(r)=(1/r)exp(f(r)) :
Attached Thumbnails

Register to reply

Related Discussions
2nd Order Differential Equation Calculus & Beyond Homework 0
2nd order differential equation using reduction of order Calculus & Beyond Homework 7
Differential equation - 2nd order diff equation Calculus & Beyond Homework 5
First Order Differential Equation Introductory Physics Homework 3