Square roots of complex numbers


by dalcde
Tags: complex, numbers, roots, square
dalcde
dalcde is offline
#1
Sep16-11, 05:46 AM
P: 166
In general, how many square roots does a complex number have?
Phys.Org News Partner Mathematics news on Phys.org
Hyperbolic homogeneous polynomials, oh my!
Researchers help Boston Marathon organizers plan for 2014 race
'Math detective' analyzes odds for suspicious lottery wins
CompuChip
CompuChip is offline
#2
Sep16-11, 07:01 AM
Sci Advisor
HW Helper
P: 4,301
A square root u of z is the solution to the polynomial equation
u2 = z
(where z must be considered as a fixed number).
It is a general theorem that this second-degree polynomial has two complex roots.

In fact, you can write them down explicitly: if [itex]z = r e^{i\phi}[/itex] then
[tex]u_1 = \sqrt{r} e^{i\phi / 2} = \sqrt{r} \left( \cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right)[/tex]
and
[tex]u_2 = -u_1[/tex]
both square to z.
phyzguy
phyzguy is offline
#3
Sep16-11, 07:03 AM
P: 2,071
Two - try looking up the Fundamental Theorem of Algebra.

HallsofIvy
HallsofIvy is offline
#4
Sep16-11, 07:51 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,896

Square roots of complex numbers


In fact, it is easy to show that any non-zero complex number has precisely n distinct nth roots:

Let [itex]z= re^{i\theta}[/itex] with r> 0. Then the nth roots of z are given by [itex]r^{1/n}e^{i(\theta+ 2k\pi)/n}[/itex] where [itex]r^{1/n}[/itex] is the positive real nth root of the positive real number r and k is a non-negative integer.

For k= 0 to n-1, those are distinct because [itex]0\le 2k\pi/n< 2\pi[/itex] but when k= n, [itex]2k\pi/n= 2n\pi/n= 2\pi[/itex] and [itex]e^{i(\theta+ 2\pi)}= e^{i\theta}[/itex].


Register to reply

Related Discussions
HP50G Complex numbers with square roots Calculators 1
Square roots of positive numbers Precalculus Mathematics Homework 4
Sum of the square roots of the first n natural numbers Precalculus Mathematics Homework 2
Complex square roots Calculus 4
Roots of Complex Numbers, Help! Introductory Physics Homework 8