## Inner product integration

Space of continuous functions.

Inner product $$<f,g>=\int_{-1}^{1}f(x)g(x)dx$$.

Find a monic polynomial orthogonal to all polynomials of lower degrees.

Taking a polynomial of degree 3.

$$x^3+ax^2+bx+c$$

Need to check $$\gamma, x+\alpha, x^2+\beta x+ \lambda$$

$$\int_{-1}^{1}(\gamma x^3+\gamma a x^2 +\gamma bx + \gamma c)dx$$
$$=\frac{\gamma x^4}{4}+\frac{\gamma a x^3}{3}+\frac{\gamma b x^2}{2}+\gamma c x|_{-1}^{1}$$
$$=\frac{2\gamma a}{3}+2\gamma c=0\Rightarrow c=-\frac{a\gamma}{3}$$

$$\int_{-1}^{1}(x^3+ax^2+bx+c)(x+\beta)dx$$
$$\int_{-1}^{1}\left(x^4+ax^3+bx^2-\frac{a\alpha x}{3}+\beta x^3 +\alpha\beta x^2+b\beta x-\frac{a\alpha\beta}{3}\right)dx=6+10b+10a\beta-10a\alpha\beta=0$$

What do I do with that?

 PhysOrg.com science news on PhysOrg.com >> Heat-related deaths in Manhattan projected to rise>> Dire outlook despite global warming 'pause': study>> Sea level influenced tropical climate during the last ice age
 Recognitions: Science Advisor well, are you given the degree you polynomial is supposed to be, or are you suppose to find a formula for any n (degree)? for n = 0, we can choose p0(x) = 1 (we don't have any polynomials of lesser degree, so any constant will do. i like 1, don't you?). for n = 1, the only requirement is that = 0 for any constant polynomial k(x) = c, that is: $$\int_{-1}^1(ax+b)c\ dx = 0$$ or: 2b = 0, so b = 0, thus p1(x) = ax. again there is no reason not to choose a = 1. for n = 2, we need = 0, and = 0 if p2(x) = rx2+sx+u, this means r = -3u, from the first inner product, and s = 0 from the second. so p2(x) = u(3x2 - 1). again, any non-zero choice will do, although one might be inclined to choose u such that = 1. now, for n = 3: you may as well assume that γ ≠ 0, since it is arbitrary, which gives: c = -a/3, not c = -aγ/3 (just divide by γ). in your second inner product, you start with x+β, instead of x+α, and somehow wind up with something with α's and β's. huh? pick a variable for the constant term of your generic linear polynomial, and stick with it.
 Thread Tools

 Similar Threads for: Inner product integration Thread Forum Replies Calculus & Beyond Homework 2 Calculus 5 General Math 5 Calculus 12