Deriving cross product and dot product, stuck at beginning.


by JJRKnights
Tags: beginning, cross, deriving, product, stuck
JJRKnights
JJRKnights is offline
#1
Nov24-11, 05:29 PM
P: 53
1. The problem statement, all variables and given/known data
Assuming that ∅ is a differentiable scalar valued function and F a differentiable vector field, derive the following identities.

a)∇(dotted with)(∅F) = ∇∅(dotted with)F + ∅∇(dotted with)F
b)∇(crossed with)(∅F) = ∇∅(crossed with)F + ∅∇(crossed with)F

2. Relevant equations



3. The attempt at a solution
Honestly don't know where to start.
Phys.Org News Partner Science news on Phys.org
Better thermal-imaging lens from waste sulfur
Hackathon team's GoogolPlex gives Siri extra powers
Bright points in Sun's atmosphere mark patterns deep in its interior
JJRKnights
JJRKnights is offline
#2
Nov24-11, 05:32 PM
P: 53
Nevermind, delete this, I've got it, just didn't put the initial effort into it.
JJRKnights
JJRKnights is offline
#3
Nov29-11, 07:14 PM
P: 53
Would this be the correct derivation for part a)

So far all I see is:
∅F is the vector field
∅ = ∅(x,y,z)
F = <P,Q,R>
∇(dotted with)F = x partial P + y partial Q + z partial R
∇∅ = <x partial ∅, y partial ∅, z partial ∅>
∅F = <∅P, ∅Q, ∅R>

a)∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅∇(dotted with)F
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅[∇(dotted with)F]
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = <∂/∂x∅, ∂/∂y∅, ∂/∂z∅>(dotted with)<P,Q,R> + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = <0,0,0>(dotted with)<P,Q,R> + ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)[∅F] = ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
<∂/∂x,∂/∂y,∂/∂z>(dotted with)<∅P, ∅Q, ∅R> = ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∅(∂/∂xP + ∂/∂yQ + ∂/∂zR) = ∅(∂/∂xP + ∂/∂yQ + ∂/∂zR)
∇(dotted with)(∅F) = [∇∅](dotted with)F + ∅∇(dotted with)F

JJRKnights
JJRKnights is offline
#4
Dec1-11, 02:32 PM
P: 53

Deriving cross product and dot product, stuck at beginning.


Hello? I did the work out and nobody can spot anything I did wrong, or if i did it right?
vela
vela is offline
#5
Dec1-11, 02:40 PM
Emeritus
Sci Advisor
HW Helper
Thanks
PF Gold
P: 11,521
No, that isn't correct. You can't treat [itex]\phi[/itex] like a constant.
JJRKnights
JJRKnights is offline
#6
Dec1-11, 02:46 PM
P: 53
Thank you for the reply.

My professor wrote all of those on the board:

ϕ = ϕ(x,y,z)
ϕF is the vector field
ϕ = ϕ(x,y,z)
F = <P,Q,R>
∇(dotted with)F = x partial P + y partial Q + z partial R
∇ϕ = <x partial ϕ, y partial ϕ, z partial ϕ>
ϕF = <ϕP, ϕQ, ϕR>

ϕ is a function of x,y, and z.
If I can't treat it as a constant in this situation, what can I do with it?
vela
vela is offline
#7
Dec1-11, 03:47 PM
Emeritus
Sci Advisor
HW Helper
Thanks
PF Gold
P: 11,521
Just start with the definition of the divergence and apply it to ϕF = (ϕP, ϕQ, ϕR):
[tex]\nabla\cdot(\phi \mathbf{F}) = \frac{\partial}{\partial x} (\phi P) + \frac{\partial}{\partial y} (\phi Q) + \frac{\partial}{\partial z} (\phi R)[/tex]Now use the product rule on each of the three terms.
JJRKnights
JJRKnights is offline
#8
Dec1-11, 08:55 PM
P: 53
∇⋅(ϕF)=∂/∂x(ϕP)+∂/∂y(ϕQ)+∂/∂z(ϕR)
so
=(ϕ'P + P'ϕ) + (ϕQ' + ϕ'Q) + (ϕR' + ϕ'R)
= ϕ'(P+Q+R) + ϕ(P'+Q'+R')
So it looks like ϕ'(P+Q+R) = (∇ϕ)⋅F and ϕ(P'+Q'+R') = ϕ(∇⋅F)
and that is the end of the proof?
vela
vela is offline
#9
Dec1-11, 10:29 PM
Emeritus
Sci Advisor
HW Helper
Thanks
PF Gold
P: 11,521
You're on the right track, but you need to keep track of the fact that the derivatives are with respect to different variables so you can't, for example, simply collect terms and factor ϕ' out to get the first term.


Register to reply

Related Discussions
Angle between 2 vectors using 1) Dot product and 2) cross product gives diff. answer? Calculus & Beyond Homework 8
Find theta from the cross product and dot product of two vectors Calculus & Beyond Homework 11
cross product and dot product of forces expressed as complex numbers Introductory Physics Homework 4
Dot product and cross product evaluation questions Calculus & Beyond Homework 4
Stuck on proof! Proving cross product derivative! Introductory Physics Homework 10