Yo-yoing over the harmonic oscillator


by DiracPool
Tags: harmonic, oscillator, yoyoing
DiracPool
DiracPool is offline
#1
Dec8-12, 07:06 AM
P: 492
I've been looking around and trying to figure it out, but I can't seem to figure out how the cosine function get's into the solution to the HO equation d2x/dt2=-kx/m. I know this is extremely basic, but could someone indulge me?
Phys.Org News Partner Physics news on Phys.org
Physicists design quantum switches which can be activated by single photons
'Dressed' laser aimed at clouds may be key to inducing rain, lightning
Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser
Physics2.0
Physics2.0 is offline
#2
Dec8-12, 07:21 AM
P: 5
The second derivative of [itex]-cosθ[/itex] is equal to [itex]cosθ[/itex]. Because [itex][-cosθ]' = -sinθ [/itex] and [itex][-sinθ]' = cosθ [/itex] so [itex][-cosθ]'' = cosθ [/itex].
Maybe this is also helpfull: http://www.wolframalpha.com/input/?i=x%27%27+%3D+-x
grzz
grzz is offline
#3
Dec8-12, 07:24 AM
P: 939
It is not so difficult to use a better notation!

Try to see whether x = acos(bt), where a and b are constants, fits with the equation

[itex]\frac{d^{2}x}{dt^{2}}[/itex] = -(positive constant)x.


Register to reply

Related Discussions
Half-Harmonic Oscillator to Full-Harmonic Potential Advanced Physics Homework 1
Quantum harmonic oscillator with harmonic perturbation Advanced Physics Homework 2
Finding the amplitude an oscillator: Driven harmonic oscillator problem Advanced Physics Homework 1
Harmonic Oscillator Introductory Physics Homework 4