Register to reply

Origin of numbers

by arivero
Tags: numbers, origin
Share this thread:
arivero
#1
Apr5-05, 11:25 AM
PF Gold
arivero's Avatar
P: 2,921
In the "origin of zero" thread, I saw the following remark:
Quote Quote by strid
the thought I'm playing with for the moment is that every rational number has its origin in 1.
I had heard a different story, in a pythagorean mood: The first thing we can say is if a number, a magnitude, a rythm, a length, etc is odd or even, ie if it can be divided or not in equal parts. From this we get the smallest odd quantity, 3, and the smallest even, 2. The unity is not got because it can not be divided after all. So after getting the odd and even numbers, we get the unity, as the difference 3-2.
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
matt grime
#2
Apr5-05, 11:39 AM
Sci Advisor
HW Helper
P: 9,396
Do you mean mathematical origin or philosophical origin?
Zurtex
#3
Apr5-05, 12:59 PM
Sci Advisor
HW Helper
P: 1,123
If you can try and find a book called 'Surreal Numbers' by Donald Knuth. Very enlightening about the importance of what some refer to as 'trivial' properties of numbers.

mathwonk
#4
Apr5-05, 04:01 PM
Sci Advisor
HW Helper
mathwonk's Avatar
P: 9,488
Origin of numbers

or cultural origin, or geographical origin, or temporal origin?
honestrosewater
#5
Apr6-05, 04:53 AM
PF Gold
honestrosewater's Avatar
P: 2,330
Quote Quote by arivero
I had heard a different story, in a pythagorean mood: The first thing we can say is if a number, a magnitude, a rythm, a length, etc is odd or even, ie if it can be divided or not in equal parts. From this we get the smallest odd quantity, 3, and the smallest even, 2. The unity is not got because it can not be divided after all. So after getting the odd and even numbers, we get the unity, as the difference 3-2.
How do you define the smallest even number without using the concept of unity? Wouldn't the smallest even number be the even number whose parts cannot be further divided (i.e. whose parts are unity)? The concept of the smallest even number would then be derived from the concept of unity.
Also, if an even number is a number which can be divided into equal parts, and an odd number is a number which is not even, then unity is an odd number, as it cannot be divided into equal parts. I can't think of a definition of oddness which excludes unity without using it. Let x and y be individual variables ranging over set S. Say x is even if there exists some y such that (y + y = x). How will you define oddness?
HallsofIvy
#6
Apr6-05, 09:32 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,556
I would define "smallest even number" (of a given set of integers) as the even number, x, in the set such that if y is any even number in the set, then x is less than or equal to y. That doesn't use "unity".

The problem I have with arivero's "...ie if it can be divided or not in equal parts. From this we get the smallest odd quantity, 3, and the smallest even, 2. The unity is not got because it can not be divided after all." (I assume he meant "at all") is that saying "a number is odd if it cannot be divided in equal parts" certainly does apply to 1. If it cannot be divided at all, then it certainly cannot be divided in equal parts and so is odd.
neurocomp2003
#7
Apr16-05, 01:34 PM
P: 1,373
Math is devised into quantities...and from a psychological standpoint the first quantity you recognize is 1.


Register to reply

Related Discussions
Irrational numbers vs. Transcendental numbers General Math 10
A new set of numbers as a z-Axis to imaginary and real numbers? General Math 9
Line of real numbers-transcendental numbers General Math 11
Irrational numbers depends on rational numbers existence General Math 0