Proving One Solution for n^3-n = d^2+d using the Elliptic Method - Learn More!

  • Thread starter Thread starter ramsey2879
  • Start date Start date
Click For Summary
The discussion centers on proving that the equation n^3 - n = d^2 + d has only one integer solution using the elliptic method. Participants note that known solutions include (n=2, d=2) and (n=6, d=14), while checking for squares up to N=1000 reveals no additional solutions. The conversation highlights the importance of excluding certain values of n, specifically 0, 1, and 2, to avoid trivial solutions. A modification to the problem introduces conditions on integers a, b, c, d, and e, leading to further exploration of potential solutions. The overall consensus suggests that the only valid solutions are limited, reinforcing the uniqueness of the findings.
ramsey2879
Messages
841
Reaction score
3
Someone told me that he heard that there is a proof based on the elliptic method that only one solution in intergers exists for this problem. This is beyond me however as I have no experience in this area. Can anyone lead me to a citation of the proof or tell me how to proceed. P.S. I determined that d has to equal the floor of the square root of n^3-n and that n=6, d=14 is a solution.
 
Last edited:
Physics news on Phys.org
n^3 - n = d^2 + d

n(n^2 - 1)= d(d + 1)
n(n + 1)(n - 1) = d(d + 1)

Clearly n = 2 and d = 2 is a solution. n = 0 and d = 0 or -1, n = -1 and d = 0 or -1, n = 1 and d = 0 or -1...
 
A start on the problem is to notice that 4(d(d+1))+1 = 4d^2+4d+1 = (2d+1)^2.

Thus we have 4N^3-4N+1 = X^2.

Checking for squares up to N=1000, N non-negative, produces only N=0,1,2,6. This suggests that no other solutions exist
 
robert Ihnot said:
A start on the problem is to notice that 4(d(d+1))+1 = 4d^2+4d+1 = (2d+1)^2.

Thus we have 4N^3-4N+1 = X^2.

Checking for squares up to N=1000, N non-negative, produces only N=0,1,2,6. This suggests that no other solutions exist
Yes, you are right I miss some important conditions given in the original problem thst excluded n=0,1,2. In my modification I let n=b in the problem below: Let a, b, c,d,e be integers such that none of them equals 1.
Does there exist a set of three consecutive integers,{a,b,c} and
another set of two consecutive integers, {d,e} such that a*b*c = d*e?
So n=0,1,2 are excluded since then one of a,b,c=1. But then N=-1 appears to be a solution, doesn't it?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
590
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 25 ·
Replies
25
Views
11K
  • · Replies 21 ·
Replies
21
Views
9K
  • · Replies 61 ·
3
Replies
61
Views
10K